293
Views
4
CrossRef citations to date
0
Altmetric
Articles

A comparison of anionic and cationic dye removal efficiency of industrial bauxite waste red-mud

, , &
Pages 144-156 | Received 28 Jan 2021, Accepted 04 May 2021, Published online: 06 Jun 2021

References

  • Tsakiridis, P. E.; Agatzini-Leonardou, S.; Oustadakis, P. Red Mud Addition in the Raw Meal for the Production of Portland Cement Clinker. J. Hazard. Mater. 2004, 116, 103–110. DOI: 10.1016/j.jhazmat.2004.08.002.
  • Bhatnagar, A.; Vilar, V. J. P.; Botelho, C. M. S.; Boaventura, R. A. R. A Review of the Use of Red Mud as Adsorbent for the Removal of Toxic Pollutants from Water and Wastewater. Environ. Technol. 2011, 32, 231–249. DOI: 10.1080/09593330.2011.560615
  • Burke, I. T.; Peacock, C. L.; Lockwood, C. L.; Stewart, D. I.; Mortimer, R. J. G.; Ward, M. B.; Renforth, P.; Gruiz, K.; Mayes, W. M. Behavior of Aluminum, Arsenic, and Vanadium during the Neutralization of Red Mud Leachate by HCl, Gypsum, or Seawater. Environ. Sci. Technol. 2013, 47, 6527–6535. DOI: 10.1021/es4010834.
  • Taneez, M.; Hurel, C. A Review on the Potential Uses of Red Mud as Amendment for Pollution Control in Environmental Media. Environ. Sci. Pollut. Res. Int. 2019, 26, 22106–22125. DOI: 10.1007/s11356-019-05576-2.
  • Tuazon, D.; Corder, G. D. Life Cycle Assessment of Seawater Neutralized Red Mud for Treatment of Acid Mine Drainage. Resour. Conserv. Recycl. 2008, 52, 1307–1314. DOI: 10.1016/j.resconrec.2008.07.010.
  • Sahu, R. C.; Patel, R. K.; Ray, B. C. Neutralization of Red Mud Using CO2 Sequestration Cycle. J. Hazard. Mater. 2010, 179, 28–34. DOI: 10.1016/j.jhazmat.2010.02.052
  • Yadav, V. S.; Prasad, M.; Khan, J.; Amritphale, S. S.; Singh, M.; Raju, C. B. Sequestration of Carbon Dioxide (CO2) Using Red Mud. J. Hazard. Mater. 2010, 176, 1044–1050. DOI: 10.1016/j.jhazmat.2009.11.146.
  • De Souza, K. C.; Antunes, M. L. P.; Couperthwaite, S. J.; da Conceição, F. T.; de Barros, T. R.; Frost, R. Adsorption of Reactive Dye on Seawater-Neutralised Bauxite Refinery Residue. J. Colloid Interface Sci. 2013, 396, 210–214. DOI: 10.1016/j.jcis.2013.01.011.
  • Paramguru, R. K.; Rath, P. C.; Misra, V. N. Trends in Red Mud Utilization – A Review. Miner. Process. Extr. Metall. Rev. 2004, 26, 1–29. DOI: 10.1080/08827500490477603.
  • Pontikes, Y. İ.; Angelopoulos, G. N. Bauxite Residue in Cement and Cementitious Applications: Current Status and a Possible Way Forward. Resour. Conserv. Recycl. 2013, 73, 53–63. DOI: 10.1016/j.resconrec.2013.01.005.
  • Singh, S.; Aswath, M. U.; Ranganath, R. V. Effect of Mechanical Activation of Red Mud on the Strength of Geopolymer Binder. Constr. Build. Mater. 2018, 177, 91–101. DOI: 10.1016/j.conbuildmat.2018.05.096.
  • Sushil, S.; Batra, V. S. Modification of Red Mud by Acid Treatment and Its Application for CO Removal. J. Hazard. Mater. 2012, 203–204, 264–273. DOI: 10.1016/j.clay.2014.03.004.
  • Samal, S.; Ray, A. K.; Bandopadhyay, A. Proposal for Resources, Utilization and Processes of Red Mud in India – A Review. Int. J. Miner. Process. 2013, 118, 43–55. DOI: 10.1016/j.minpro.2012.11.001.
  • Joseph, C. G.; Taufiq-Yap, Y. H.; Krishnan, V.; Puma, G. L. Application of Modified Red Mud in Environmentally-Benign Applications: A Review. Environ. Eng. Res. 2019, 25, 795–806. DOI: 10.4491/eer.2019.374.
  • Orescanin, V.; Durgo, K.; Franekic-Colic, J.; Nad, K.; Valkovic, V. Physical, Chemical, and Genotoxic Properties of Waste Mud by-Product of Waste Water Treatment. J. Trace Microprobe Tech. 2003, 21, 123–132. DOI: 10.1081/TMA-120017903.
  • Orescanin, V.; Tibljas, D.; Valkovic, V. Valkovic. V. Soil and Environmental Sciences a Study of Coagulant Production from Red Mud and Its Use for Heavy Metals Removal. J. Trace Microprobe Tech. 2002, 20, 233–245. DOI: 10.1081/TMA-120003726.
  • Bertocchi, A. F.; Ghiani, M.; Peretti, R.; Zucca, A. Red Mud and Fly Ash for Remediation of Mine Sites Contaminated with as, Cd, Cu, Pb and Zn. J. Hazard. Mater. 2006, 134, 112–119. DOI: 10.1016/j.jhazmat.2005.10.043.
  • Sahu, R. C.; Patel, R.; Ray, B. C. Adsorption of Zn(II) on Activated Red Mud: Neutralized by CO2. Desalination 2011, 266, 93–97. DOI: 10.1016/j.desal.2010.08.007.
  • Sahu, M. K.; Mandal, S.; Dash, S. S.; Badhai, P.; Patel, R. K. Removal of Pb(II) from Aqueous Solution by Acid Activated Red Mud. J. Environ. Chem. Eng. 2013, 1, 1315–1324. DOI: 10.1016/j.jece.2013.09.027.
  • Khan, T. A.; Chaudhry, S. A.; Ali, I. Equilibrium Uptake, Isotherm and Kinetic Studies of Cd(II) Adsorption onto Iron Oxide Activated Red Mud from Aqueous Solution. J. Mol. Liq. 2015, 202, 165–175. DOI: http://dx.doi.org/10.1016/j.molliq.2014.12.021.
  • Smičiklas, I.; Smiljanić, S.; Peric’-Grujić, A.; Šljivić-Ivanović, M.; Mitrić, M.; Antonović, D. Effect of Acid Treatment on Red Mud Properties with Implications on Ni(II) Sorption and Stability. Chem. Eng. J. 2014, 242, 27–35. DOI: 10.1016/j.cej.2013.12.079.
  • Sahu, M. K.; Mandal, S.; Yadav, L. S.; Dash, S. S.; Patel, R. K. Equilibrium and Kinetic Studies of Cd(II) Ion Adsorption from Aqueous Solution by Activated Red Mud. Desalin. Water Treat. 2016, 57, 14251–14265. DOI: 10.1080/19443994.2015.1062428.
  • Apak, R.; Atun, G.; Guclu, K.; Tutem, E.; Keskin, G. Sorptive Removal of Cesium-137 and Strontium-90 from Water by Unconventional Sorbents, Usage of Bauxite Wastes (Red Muds). J. Nucl. Sci. Technol. 1995, 32, 1008–1017. DOI: 10.1080/18811248.1995.9731809.
  • Shiao, S. J.; Akashi, K. Phosphate Removal from Aqueous Solution from Activated Red Mud. J. Water Pollut. Control Fed. 1997, 49, 280–285. https://www.jstor.org/stable/25039253.
  • Koumanova, B.; Drame, M.; Popangelova, M. Phosphate Removal from Aqueous Solutions Using Red Mud in Bauoxite Bayer’s Process. Resour. Conserv. Recycl. 1997, 19, 11–20. DOI: 10.1016/S0921-3449(96)01158-5.
  • Yue, Q.; Zhao, Y.; Li, Q.; Li, W.; Gao, B.; Han, S.; Qi, Y.; Yu, H. Research on the Characteristics of Red Mud Granular Adsorbents (RMGA) for phosphate removal. J. Hazard. Mater. 2010, 176, 741–748. DOI: 10.1016/j.jhazmat.2009.11.098.
  • Genç-Fuhrman, H.; Tjell, J. C.; McConchie, D. Adsorption of Arsenic from Water Using Activated Neutralized Red Mud. Environ. Sci. Technol. 2004, 38, 2428–2434. DOI: 10.1021/es035207h.
  • Zhang, S.; Liu, C.; Luan, Z.; Peng, X.; Ren, H.; Wang, J. Arsenate Removal from Aqueous Solutions Using Modified Red Mud. J. Hazard. Mater. B 2008, 152, 486–492. DOI: 10.1016/j.clay.2014.03.004.
  • Gupta, V. K.; Ali, I.; Saini, V. K. Removal of Chlorophenols from Wastewater Using Red Mud: An Aluminum Industry Waste. Environ. Sci. Technol. 2004, 38, 4012–4018. DOI: 10.1021/es049539d.
  • Tor, A.; Cengeloglu, Y.; Aydin, M. E.; Ersoz, M. Removal of Phenol from Aqueous Phase by Using Neutralized Red Mud. J Colloid Interface Sci. 2006, 300, 498–503. DOI: 10.1016/j.jcis.2006.04.054.
  • Tor, A.; Cengeloglu, Y.; Ersoz, M. Increasing the Phenol Adsorption Capacity of Neutralized Red Mud by Application of Acid Activation Procedure. Desalination 2009, 242, 19–28. DOI: 10.1016/j.desal.2008.03.028.
  • Wang, S.; Boyjoo, Y.; Choueib, A.; Zhu, Z. H. Removal of Dyes from Aqueous Solution Using Fly Ash and Red Mud. Water Res. 2005, 39, 129–138. DOI: 10.1016/j.watres.2004.09.011.
  • Coruh, S.; Geyikçi, F.; Ergun, O. N. Adsorption of Basic Dye from Wastewater Using Raw and Activated Red Mud. Environ. Technol. 2011, 32, 1183–1193. DOI: 10.1080/09593330.2010.529946.
  • Gupta, V. K.; Suhas, Ali, I.; Saini, V. K. Removal of Rhodamine B, Fast Green, and Methylene Blue from Wastewater Using Red Mud, an Aluminum Industry Waste. Ind. Eng. Chem. Res. 2004, 43, 1740–1747. DOI: 10.1021/ie034218g
  • Sahu, M. K.; Patel, R. K. Removal of Safranin-O Dye from Aqueous Solution Using Modified Red Mud: Kinetics and Equilibrium Studies. RSC Adv. 2015, 5, 78491–78501. DOI: 10.1016/j.watres.2004.09.011.
  • Namasivayam, C.; Arasi, D. J. S. E. Removal of Congo Red from Wastewater by Adsorption onto Waste Red Mud. Chemosphere 1997, 34, 401–417. DOI: 10.1016/S0045-6535(96)00385-2.
  • Tor, A.; Cengeloglu, Y. Removal of Congo Red from Aqueous Solution by Adsorption onto Acid Activated Red Mud. J. Hazard. Mater. 2006, 138, 409–415. DOI: 10.1016/j.jhazmat.2006.04.063.
  • Wang, Q.; Luan, Z.; Wei, N.; Li, J.; Liu, C. The Color Removal of Dye Wastewater by Magnesium Chloride/Red Mud (MRM) from Aqueous Solution. J. Hazard. Mater. 2009, 170, 690–698. DOI: 10.1016/j.jhazmat.2009.05.011.
  • Norouzi, S.; Badii, K.; Doulati Ardejani, F. Activated Bauxite Waste as an Adsorbent for Removal of Acid Blue 92 from Aqueous Solutions. Water Sci. Technol. 2010, 62, 2491–2500. DOI: 10.2166/wst.2010.514.
  • Ratnamala, G. M.; Shetty, K. V.; Srinikethan, G. Removal of Remazol Brilliant Blue Dye from Dye-Contaminated Water by Adsorption Using Red Mud: Equilibrium, Kinetic, and Thermodynamic Studies. Water. Air. Soil Pollut. 2012, 223, 6187–6199. DOI: 10.1016/j.jiec.2013.07.028.
  • Shirzad-Siboni, M.; Jafari, S. J.; Giahi, O.; Kim, I.; Lee, S. M.; Yang, J. K. Removal of Acid Blue 113 and Reactive Black 5 Dye from Aqueous Solutions by Activated Red Mud. J. Ind. Eng. Chem. 2014, 20, 1432–1437. DOI: 10.1016/j.jiec.2013.07.028.
  • De Oliveira, E. H. C.; Mendonça, É. T. R.; Barauna, O. S.; Ferreira, J. M.; Sobrinho, M. A. M. Study of Variables for Optimization of the Dye Indosol Adsorption Process Using Red Mud and Clay as Adsorbents. Adsorption 2016, 22, 59–69. doi:10.1007/s10450-015-9742-0.
  • Bacioiu, I. G.; Stoica, L.; Constantin, C.; Stanescu, A. M. Removal of Tartrazine from Aqueous Solution by Adsorption on Activated Red Mud. Water. Air. Soil Pollut. 2017, 228, 228–298. doi: 10.1007/s11270-017-3469-3.
  • De Jesus, C. P. C.; Antunes, M. L. P.; da Conceição, F. T.; Navarro, G. R. B.; Moruzzi, R. B. Removal of Reactive Dye from Aqueous Solution Using Thermally Treated Red Mud. Desalin. Water Treat. 2015, 55, 1040–1047. DOI: 10.1080/19443994.2014.922444.
  • Zhang, L.; Zhang, H.; Guo, W.; Tian, Y. Removal Ofmalachite Green and Crystal Violet Cationic Dyes Fromaqueous Solution Using Activated Sintering Process Red Mud. Appl. Clay Sci. 2014, 93-94, 85–93. DOI: 10.1016/j.clay.2014.03.004.
  • Namasivayam, C.; Yamuna, R. T.; Arasi, D. J. S. E. Removal of Acid Violet from Wastewater by Adsorption on Waste Red Mud. Environ. Geol. 2001, 41, 269–273. DOI: 10.1007/s002540100411.
  • Ayar, N.; Atun, G. Modeling of Adsorption Kinetics and Equilibria of Acid Dyes onto Activated Carbon in Single- and Binary-Component Systems. Toxicol. Environ. Chem. 2014, 96, 1012–1028. DOI: http://dx.doi.org/10.1080/02772248.2015.1005088.
  • Bulgariu, L.; Escudero, L. B.; Bello, O. S.; Iqbal, M.; Nisar, J.; Adegoke, K. A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I. The Utilization of Leaf-Based Adsorbents for Dyes Removal: A Review. J. Mol. Liq. 2019, 276, 728–747. DOI: 10.1016/j.molliq.2018.12.001.
  • Bello, O. S.; Adegoke, K. A.; Sarumi, O. O.; Lameed, O. S. Functionalized Locust Bean Pod (Parkia Biglobosa) Activated Carbon for Rhodamine B Dye Removal. Heliyon 2019, 5, e02323. DOI: 10.1016/j.heliyon.2019.e02323.
  • Bello, O. S.; Alabi, E. O.; Adegoke, K. A.; Adegboyega, S. A.; Inyinbor, A. A.; Dada, A. O. Rhodamine B Dye Sequestration Using Gmelina Aborea Leaf Powder. Heliyon 2020, 6, e02872. DOI: 10.1016/j.heliyon.2019.e02872.
  • Bello, O. S.; Adegoke, K. A.; Fagbenro, S. O.; Lameed, O. S. Functionalized Coconut Husks for Rhodamine-B Dye Sequestration. Appl. Water Sci. 2019, 9, 189. DOI: 10.1007/s13201-019-1051-4.
  • Ahmad, M. A.; Ahmed, N. A. B.; Adegoke, K. A.; Bello, O. S. Sorption Studies of Methyl Red Dye Removal Using Lemon Grass (Cymbopogon Citratus). Chem. Data Collect. 2019, 22, 100249. DOI: 10.1016/j.cdc.2019.100249.
  • Adegoke, K. A.; O.S Agboola; Ogunmodede, J.; Araoye, A. O.; Bello, O. S. Metal-Organic Frameworks as Adsorbents for Sequestering Organic Pollutants from Wastewater. Mater. Chem. Phys. 2020, 253, 123246. DOI: 10.1016/j.matchemphys.2020.123246.
  • Ahmad, M. A.; Eusoff, M. A.; Oladoye, P. O.; Adegoke, K. A.; Bello, O. S. Statistical Optimization of Remazol Brilliant Blue R Dye Adsorption onto Activated Carbon Prepared from Pomegranate Fruit Peel. Chem. Data Collect. 2020, 28, 100426. DOI: 10.1016/j.cdc.2020.100426.
  • Ahmad, M. A.; Ahmed, N. A. B.; Adegoke, K. A.; Bello, O. S. Trapping Synthetic Dye Molecules Using Modified Lemon Grass Adsorbent. J. Dispersion Sci. Technol. 2020. 1844016, 1–15. DOI: 10.1080/01932691.2020.1844016.
  • Ahmad, M. A.; Ahmed, N. A. B.; Adegoke, K. A.; Bello, O. S. Adsorptive Potentials of Lemongrass Leaf for Methylene Blue Dye Removal. Chem. Data Collect. 2021, 31, 100578. DOI: 10.1016/j.cdc.2020.100578.
  • Castaldi, P.; Silvetti, M.; Santona, L.; Enzo, S.; Melis, P. XRD, FTIR, and Thermal Analysis of Bauxite Ore-Processing Waste (Red Mud) Exchanged with Heavy Metals. Clays Clay Miner. 2008, 56, 461–469. DOI: 10.1346/CCMN.2008.0560407.
  • Zainuri, M. Hematite from Natural Iron Stones as Microwave Absorbing Material on X-Band Frequency Ranges, 3rd International Conference on Functional Materials Science 2016 IOP Conf. Series. IOP Conf. Ser: Mater. Sci. Eng. 2017, 196, 012008. DOI: 10.1088/1757899X/196/1/012008.
  • Xu, S.; Habib, A. H.; Gee, S. H.; Hong, Y. K.; McHenry, M. E. Spin Orientation, Structure, Morphology, and Magnetic Properties of Hematite Nanoparticles. J. Appl. Phys. 2015, 117, 17A315. DOI: 10.1063/1.4914059.
  • Ho, Y. S. Review of Second-Order Models for Adsorption Systems. J. Hazard. Mater. 2006, 136, 681–689. DOI: 10.1016/j.jhazmat.2005.12.043.
  • Inglezakis, V. J.; Grigoropoulou, H. P. Applicability of Simplified Models for the Estimation of Ion Exchange Diffusion Coefficients in Zeolites. J. Colloid Interface Sci. 2001, 234, 434–441. DOI: 10.1006/jcis.2000.7304.
  • Magzoub, M. I.; Hussein, I. A.; Nasser, M. S.; Mahmoud, M.; Sultan, A. S.; Benamor, A. An Investigation of the Swelling Kinetics of Bentonite Systems Using Particle Size Analysis. J. Dispersion Sci. Technol. 2020, 41, 817–827. DOI: 10.1080/01932691.2019.1612758.
  • Freundlich, H. M. F. Uber Die Adsorption in Lösungen. Z. Phys. Chem. 1906, 57, 385–470. DOI: 10.1515/zpch-1907-5723.
  • Dubinin, M. M.; Radushkevich, L. V. Equation of the Characteristic Curve of Activated Charcoal. Chem. Zentralbl. 1947, 1, 875–889.
  • Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. DOI: 10.1021/ja02242a004.
  • Atun, G.; Hisarli, G. A Study of Surface Properties of Red Mud by Potentiometric Method. J. Colloid Interface Sci. 2000, 228, 40–45. DOI: 10.1006/jcis.2000.6926
  • Liu, Y. Is the Free Energy Change of Adsorption Correctly Calculated? J. Chem. Eng. Data 2009, 54, 1981–1985. DOI: 10.1021/je800661q.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.