234
Views
4
CrossRef citations to date
0
Altmetric
Articles

Stability, rheology, and thermophysical properties of surfactant free aqueous single-walled carbon nanotubes and graphene nanoplatelets nanofluids: a comparative study

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 299-308 | Received 14 Feb 2021, Accepted 13 Jun 2021, Published online: 18 Jul 2021
 

Abstract

A comparative study, for the first time, was conducted on thermophysical and rheological properties of single-walled carbon nanotubes (SWCNT) and graphene nanoplatelets (GNP) nanofluids. Highly stable aqueous 0.5, 1.0, and 2.0 wt% SWCNT and GNP nanofluids were successfully prepared with no surfactant, through ultrasound technology. The preparation was explained in detail, adjusting pH to around 8 where nanofluids would be expected to be stable. The highest zeta potential of −60.5 mV was obtained for 2.0 wt% SWCNT nanofluids. Shear thinning was observed for all nanofluids at low shear rates. Unlike shear thickening of GNP, Newtonian behavior of SWCNT nanofluids was detected at high shear rate region. The effect of ultrasound technology was directly verified by scanning electron microscopy (SEM), resulting in GNP size reduction and separation of bundles for SWCNT. The results revealed that SWCNT nanofluids showed a remarkable zeta potential value for heat transfer systems compared to GNP nanofluids.

Graphical Abstract

Additional information

Funding

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant [number 117M953].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.