234
Views
4
CrossRef citations to date
0
Altmetric
Articles

Stability, rheology, and thermophysical properties of surfactant free aqueous single-walled carbon nanotubes and graphene nanoplatelets nanofluids: a comparative study

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 299-308 | Received 14 Feb 2021, Accepted 13 Jun 2021, Published online: 18 Jul 2021

References

  • John, G. Richard Feynman: A Life in Science; Dutton: NY, 1997.
  • Choi, S. U. S.; Eastman, J. A. Enhancing Thermal Conductivity of Fluids with Nanoparticles. International Mechanical Engineering Congress and Exhibition, San Francisco, CA, United States, 1995.
  • Ahmadi, M. H.; Mirlohi, A.; Alhuyi Nazari, M.; Ghasempour, R. A Review of Thermal Conductivity of Various Nanofluids. J. Mol. Liq. 2018, 265, 181–188. DOI: 10.1016/j.molliq.2018.05.124.
  • Sadeghinezhad, E.; Mehrali, M.; Saidur, R.; Mehrali, M.; Tahan Latibari, S.; Akhiani, A. R.; Metselaar, H. S. C. A Comprehensive Review on Graphene Nanofluids: Recent Research, Development and Applications. Energy Convers. Manag. 2016, 111, 466–487. DOI: 10.1016/j.enconman.2016.01.004.
  • Tawfik, M. M. Experimental Studies of Nanofluid Thermal Conductivity Enhancement and Applications: A Review. A Review, Renew. Sust. Energ. Rev. 2017, 75, 1239–1253. DOI: 10.1016/j.rser.2016.11.111.
  • Raja, M.; Vijayan, R.; Dineshkumar, P.; Venkatesan, M. Review on Nanofluids Characterization, Heat Transfer Characteristics and Applications. Renew. Sust. Energ. Rev. 2016, 64, 163–173. [Database] DOI: 10.1016/j.rser.2016.05.079.
  • Said, Z. Thermophysical and Optical Properties of SWCNTs Nanofluids. Int. Commun. Heat Mass 2016, 78, 207–213. DOI: 10.1016/j.icheatmasstransfer.2016.09.017.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. DOI: 10.1126/science.1102896.
  • Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.; Seal, S. Graphene Based Materials: Past, Present and Future. Mater. Sci. 2011, 56, 1178–1271. DOI: 10.1016/j.pmatsci.2011.03.003.
  • Zhang, T.; Xue, Q.; Zhang, S.; Dong, M. Theoretical Approaches to Graphene and Graphene-Based Materials. Nano Today 2012, 7, 180–200. DOI: 10.1016/j.nantod.2012.04.006.
  • Balaji, T.; Selvam, C.; Lal, D. M.; Harish, S. Enhanced Heat Transport Behavior of Micro Channel Heat Sink with Graphene Based Nanofluids. Int. Commun. Heat Mass 2020, 117, 104716. DOI: 10.1016/j.icheatmasstransfer.2020.104716.
  • Fuskele, V.; Sarviya, R. M. Recent Developments in Nanoparticles Synthesis, Preparation and Stability of Nanofluids. Mater. Today 2017, 4, 4049–4060. DOI: 10.1016/j.matpr.2017.02.307.
  • Sezer, N.; Atieh, M. A.; Koç, M. A Comprehensive Review on Synthesis, Stability, Thermophysical Properties, and Characterization of Nanofluids. Powder Technol. 2019, 344, 404–431. DOI: 10.1016/j.powtec.2018.12.016.
  • Sharifpur, M.; Meyer, J.; Aybar, H. 2015 Nanofluids; Opportunities and Challenges. In 11th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT 2015), Kruger National Park, South Africa,; pp. 217–220.
  • Mukherjee, S.; Mishra, P. C.; Chaudhuri, P. Stability of Heat Transfer Nanofluids – A Review. ChemBioEng. Rev. 2018, 5, 312–333. DOI: 10.1002/cben.201800008.
  • Mehrali, M.; Sadeghinezhad, E.; Latibari, S. T.; Kazi, S. N.; Mehrali, M.; Zubir, M. N. B. M.; Metselaar, H. S. C. Investigation of Thermal Conductivity and Rheological Properties of Nanofluids Containing Graphene Nanoplatelets. Nanoscale Res. Lett. 2014, 9, 15. DOI: 10.1186/1556-276x-9-15.
  • Ilyas, S. U.; Narahari, M.; Theng, J. T. Y.; Pendyala, R. Experimental Evaluation of Dispersion Behavior, Rheology and Thermal Analysis of Functionalized Zinc Oxide-Paraffin Oil Nanofluids. J. Mol. Liq. 2019, 294, 111613. DOI: 10.1016/j.molliq.2019.111613.
  • Sharma, A. K.; Tiwari, A. K.; Dixit, A. R. Rheological Behaviour of Nanofluids: A Review. Renew. Sust. Energ. Rev. 2016, 53, 779–791. DOI: 10.1016/j.rser.2015.09.033.
  • Murshed, S. M.; S; Estellé, P. A State of the Art Review on Viscosity of Nanofluids. Renew. Sust. Energ. Rev. 2017, 76, 1134–1152. DOI: 10.1016/j.rser.2017.03.113.
  • López, L. H.; Monzonís, L. M.; Vicente, L. B. Report about Industries Perspectives on Nanofluids Market Uptake. 2019.
  • Ahmadi, A.; Ganji, D. D.; Jafarkazemi, F. Analysis of Utilizing Graphene Nanoplatelets to Enhance Thermal Performance of Flat Plate Solar Collectors. Energy Convers. Manag. 2016, 126, 1–11. DOI: 10.1016/j.enconman.2016.07.061.
  • Yu, W.; Xie, H.; Chen, L. Nanofluids. In Smart Nanoparticles Technology; Hashim, A., Ed.; IntechOpen: Shangai, 2012.
  • Yu, W.; Xie, H. A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. J. Nanomater. 2012, 2012, 17. DOI: 10.1155/2012/435873.
  • Almanassra, I. W.; Manasrah, A. D.; Al-Mubaiyedh, U. A.; Al-Ansari, T.; Malaibari, Z. O.; Atieh, M. A. An Experimental Study on Stability and Thermal Conductivity of Water/CNTs Nanofluids Using Different Surfactants: A Comparison Study. J. Mol. Liq. 2020, 304, 111025. DOI: 10.1016/j.molliq.2019.111025.
  • Yu, F.; Chen, Y.; Liang, X.; Xu, J.; Lee, C.; Liang, Q.; Tao, P.; Deng, T. Dispersion Stability of Thermal Nanofluids. Prog. Nat. Sci. 2017, 27, 531–542. DOI: 10.1016/j.pnsc.2017.08.010.
  • Li, Y.; Maruyama, S. Single-Walled Carbon Nanotubes; Springer: Cham, 2019.
  • Sabiha, M. A.; Mostafizur, R. M.; Saidur, R.; Mekhilef, S. Experimental Investigation on Thermo Physical Properties of Single Walled Carbon Nanotube Nanofluids. Int. J. Heat Mass Transf. 2016, 93, 862–871. DOI: 10.1016/j.ijheatmasstransfer.2015.10.071.
  • Harish, S.; Ishikawa, K.; Einarsson, E.; Aikawa, S.; Chiashi, S.; Shiomi, J.; Maruyama, S. Enhanced Thermal Conductivity of Ethylene Glycol with Single-Walled Carbon Nanotube Inclusions. Int. J. Heat Mass Transf. 2012, 55, 3885–3890. [Database] DOI: 10.1016/j.ijheatmasstransfer.2012.03.001.
  • Fedele, L.; Colla, L.; Bobbo, S.; Barison, S.; Agresti, F. Experimental Stability Analysis of Different water-based nanofluids. Nanoscale Res Lett. 2011, 6, 300. DOI: 10.1186/1556-276X-6-300.
  • Kazemi-Beydokhti, A.; Zeinali Heris, S.; Jaafari, M. R. Experimental Investigation of Thermal Conductivity of Medical Nanofluids Based on Functionalised Single-Wall Carbon Nanotube and Conjugated Cisplatin. Micro Nano Lett. 2015, 10, (5), 241–247.. DOI: 10.1049/mnl.2014.0593.
  • Le Ba, T.; Mahian, O.; Wongwises, S.; Szilágyi, I. M. Review on the Recent Progress in the Preparation and Stability of Graphene-Based Nanofluids. J. Therm. Anal. Calorim. 2020, 142, 1145–1172. DOI: 10.1007/s10973-020-09365-9.
  • Gandhi, K. S. K.; Velayutham, M.; Das, S. K.; Thirumalachari, S. 2011 Measurement of Thermal and Electrical Conductivities of Graphene Nanofluids. In 3rd Micro and Nano Flows Conference, Thessaloniki, Greece.
  • Sadeghinezhad, E.; Togun, H.; Mehrali, M.; Sadeghi Nejad, P.; Tahan Latibari, S.; Abdulrazzaq, T.; Kazi, S. N.; Metselaar, H. S. C. An Experimental and Numerical Investigation of Heat Transfer Enhancement for Graphene Nanoplatelets Nanofluids in Turbulent Flow Conditions. Int. J. Heat Mass Transf. 2015, 81, 41–51. DOI: 10.1016/j.ijheatmasstransfer.2014.10.006.
  • Hamze, S.; Cabaleiro, D.; Estellé, P. Graphene-Based Nanofluids: A Comprehensive Review about Rheological Behavior and Dynamic Viscosity. J. Mol. Liq. 2021, 325, 115207. DOI: 10.1016/j.molliq.2020.115207.
  • Askari, S.; Lotfi, R.; Seifkordi, A.; Rashidi, A. M.; Koolivand, H. A Novel Approach for Energy and Water Conservation in Wet Cooling Towers by Using MWNTs and Nanoporous Graphene Nanofluids. Energy Convers. Manag. 2016, 109, 10–18. DOI: 10.1016/j.enconman.2015.11.053.
  • Karami, H.; Papari-Zare, S.; Shanbedi, M.; Eshghi, H.; Dashtbozorg, A.; Akbari, A.; Mohammadian, E.; Heidari, M.; Sahin, A. Z.; Teng, C. B. The Thermophysical Properties and the Stability of Nanofluids Containing Carboxyl-Functionalized Graphene Nano-Platelets and Multi-Walled Carbon Nanotubes. Int. Commun. Heat Mass Transf. 2019, 108, 104302. DOI: 10.1016/j.icheatmasstransfer.2019.104302.
  • Yazid, M. N. A. W. M.; Sidik, N. A. C.; Mamat, R.; Najafi, G. A Review of the Impact of Preparation on Stability of Carbon Nanotube Nanofluids. Int. Commun. Heat Mass Transf. 2016, 78, 253–263. DOI: 10.1016/j.icheatmasstransfer.2016.09.021.
  • Cabaleiro, D.; Colla, L.; Barison, S.; Lugo, L.; Fedele, L.; Bobbo, S. Heat Transfer Capability of (Ethylene Glycol + Water)-Based Nanofluids Containing Graphene Nanoplatelets: Design and Thermophysical Profile. Nanoscale Res Lett. 2017, 12, 53. DOI: 10.1186/s11671-016-1806-x.
  • Turgut, A.; Sauter, C.; Chirtoc, M.; Henry, J. F.; Tavman, S.; Tavman, I.; Pelzl, J. AC Hot Wire Measurement of Thermophysical Properties of Nanofluids with 3ω Method. Eur. Phys. J. Spec. Top. 2008, 153, 349–352. DOI: 10.1140/epjst/e2008-00459-7.
  • Turgut, A.; Tavman, I.; Chirtoc, M.; Schuchmann, H. P.; Sauter, C.; Tavman, S. Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids. Int. J. Thermophys. 2009, 30, 1213–1226. DOI: 10.1007/s10765-009-0594-2.
  • Kim, D. H.; Yun, Y. S.; Jin, H.-J. Difference of Dispersion Behavior between Graphene Oxide and Oxidized Carbon Nanotubes in Polar Organic Solvents. Curr. Appl. Phys. 2012, 12, 637–642. DOI: 10.1016/j.cap.2011.09.015.
  • Chakraborty, S.; Panigrahi, P. K. Stability of Nanofluid: A Review. Appl. Therm. Eng. 2020, 174, 115259. DOI: 10.1016/j.applthermaleng.2020.115259.
  • Sarsam, W. S.; Amiri, A.; Kazi, S. N.; Badarudin, A. Stability and Thermophysical Properties of Non-Covalently Functionalized Graphene Nanoplatelets Nanofluids. Energy Convers. Manag. 2016, 116, 101–111. DOI: 10.1016/j.enconman.2016.02.082.
  • Tranter, G. E. UV-Visible Absorption and Fluorescence Spectrometers. In Encyclopedia of Spectroscopy and Spectrometry; Lindon, J.C., Ed. Elsevier: Oxford, 1999; pp. 2383–2389.
  • Nasiri, A.; Shariaty-Niasar, M.; Rashidi, A. M.; Khodafarin, R. Effect of CNT Structures on Thermal Conductivity and Stability of Nanofluid. Int. J. Heat Mass Transf. 2012, 55, 1529–1535. [Database] DOI: 10.1016/j.ijheatmasstransfer.2011.11.004.
  • Tseng, W. J.; Wu, C. H. Aggregation, Rheology and Electrophoretic Packing Structure of Aqueous A12O3 Nanoparticle Suspensions. Acta Mater. 2002, 50, 3757–3766. DOI: 10.1016/S1359-6454(02)00142-8.
  • Ewoldt, R. H.; Johnston, M. T.; Caretta, L. M. Experimental Challenges of Shear Rheology: How to Avoid Bad Data. In Complex Fluids in Biological Systems: Experiment, Theory, and Computation; Spagnolie, S.E., Ed.; Springer New York: New York, NY, 2015; pp. 207–241.
  • Pamies, R.; Avilés, M. D.; Arias-Pardilla, J.; Carrión, F. J.; Sanes, J.; Bermúdez, M. D. Rheological Study of New Dispersions of Carbon Nanotubes in the Ionic Liquid 1-Ethyl-3-Methylimidazolium Dicyanamide. J. Mol. Liq. 2019, 278, 368–375. DOI: 10.1016/j.molliq.2019.01.074.
  • Duffy, J.; Larsson, M.; Hill, A. 2012 Suspension Stability; Why Particle Size, Zeta Potential and Rheology Are Important. In Proceedings of the Nordic Rheology Conference, Oslo, Norway.
  • Sohel Murshed, S. M.; Tan, S.-H.; Nguyen, N.-T. Temperature Dependence of Interfacial Properties and Viscosity of Nanofluids for Droplet-Based Microfluidics. J. Phys. D: Appl. Phys. 2008, 41, 085502. DOI: 10.1088/0022-3727/41/8/085502.
  • Putra, N.; Roetzel, W.; Das, S. K. Natural Convection of Nano-Fluids. Heat Mass Transf. 2003, 39, 775–784. DOI: 10.1007/s00231-002-0382-z.
  • Timofeeva, E. V.; Yu, W.; France, D. M.; Singh, D.; Routbort, J. L. Nanofluids for Heat Transfer: An Engineering approach. Nanoscale Res Lett. 2011, 6, 182. DOI: 10.1186/1556-276X-6-182.
  • Özerinç, S.; Kakaç, S.; Yazıcıoğlu, A. G. Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review. Microfluid. Nanofluid. 2010, 8, 145–170. DOI: 10.1007/s10404-009-0524-4.
  • Prasher, R.; Phelan, P. E.; Bhattacharya, P. Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid). Nano Lett. 2006, 6, 1529–1534. DOI: 10.1021/nl060992s.
  • Putnam, S. A.; Cahill, D. G.; Braun, P. V.; Ge, Z.; Shimmin, R. G. Thermal Conductivity of Nanoparticle Suspensions. J. Appl. Phys. 2006, 99, 084308. [Database] DOI: 10.1063/1.2189933.
  • Sidik, N. A. C.; Yazid, M. N. A. W. M.; Samion, S. A Review on the Use of Carbon Nanotubes Nanofluid for Energy Harvesting System. Int. J. Heat Mass Transf. 2017, 111, 782–794. DOI: 10.1016/j.ijheatmasstransfer.2017.04.047.
  • Xing, M.; Yu, J.; Wang, R. Experimental Study on the Thermal Conductivity Enhancement of Water Based Nanofluids Using Different Types of Carbon Nanotubes. Int. J. Heat Mass Transf. 2015, 88, 609–616. [Database] DOI: 10.1016/j.ijheatmasstransfer.2015.05.005.
  • Antoniadis, K. D.; Tertsinidou, G. J.; Assael, M. J.; Wakeham, W. J. Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids Are Seldom Satisfied. Int. J. Thermophys. 2016, 37, 78. DOI: 10.1007/s10765-016-2083-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.