125
Views
3
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Visualization of counter pressure mechanism in gas-assisted injection molding process

, , , , &
Pages 459-470 | Received 21 Apr 2016, Accepted 19 Jul 2017, Published online: 09 Aug 2017
 

Abstract

Gas-assisted injection molding (GAIM) refers to injecting gas into the short shot melt during the filling stage. Compressed gas is used as the medium to push the melt and to provide the packing pressure. In GAIM, the hollow area and penetration length are the main factors that will affect the quality of molded parts. This study has applied a Gas Counter Pressure (GCP) mechanism and has discussed the effect of GCP in the GAIM process with in-mold visualization of this complex molding flow. This study introduces a counter pressure mechanism in a thick paper-clip-shaped cavity design. The flow field under different counter pressure conditions is observed by high-speed photography, the fiber orientations are analyzed with SEM, and the affected penetration length and hollow area are measured relatively. The experimental results show that when the GCP is applied to GAIM, although the hollow area is reduced, the penetration length will be increased, so as to make the quality of molded part more uniform and reduce the shrinkage. And a quantitative measuring method of two-stage penetration time span is proposed to get more in-depth discussion about the interactions between GCP and GAIM.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 199.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.