233
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Phase evolution in mechanical alloying and spark plasma sintering of AlxCoCrCuFeNi HEAs

, , , &
Pages 604-614 | Received 02 Dec 2019, Accepted 24 Jan 2020, Published online: 05 Feb 2020
 

ABSTRACT

AlxCoCrCuFeNi high-entropy alloys were synthesised through mechanical alloying and spark plasma sintering. Different alloys were produced by varying the aluminium content (x = 0.5, 1.5, 2.5 and 4). The influences of the milling duration on the evolution of microstructure, constituent phases and morphology were studied. Increasing milling time resulted in grain refinement and higher solid solution homogenisation characterised by a high internal strain. As a consequence of aluminium addition, the microstructure of materials evolved from face centered cubic (FCC) and body centered cubic (BCC) phases to FCC, BCC and ordered BCC phases. Both mechanical alloying and SPS conditions as well as aluminium content led to grain refinement and variations of mechanical properties. In particular, hardness increased with increasing aluminium content. The aluminium percentage and the evolution of consequent phases are responsible for the microstructural stability at high temperatures. In addition, with Al content increase, the further synergy of strength and ductility along with a more pronounced strain hardening was obtained.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.