233
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Phase evolution in mechanical alloying and spark plasma sintering of AlxCoCrCuFeNi HEAs

, , , &
Pages 604-614 | Received 02 Dec 2019, Accepted 24 Jan 2020, Published online: 05 Feb 2020

References

  • Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303. doi: 10.1002/adem.200300567
  • Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93. doi: 10.1016/j.pmatsci.2013.10.001
  • Murty BS, Yeh JW, Ranganathan S. High entropy alloys. Third ed. London: Elsevier; 2014.
  • Yeh C, Chang YJ, Tsai W, et al. On the solidification and phase stability of a Co-Cr-Fe-Ni-Ti high-entropy alloy. Met Trans. 2014;45A:184–191. doi: 10.1007/s11661-013-2097-9
  • Lu Y, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep. 2014;4:6200. doi: 10.1038/srep06200
  • Liu YX, Cheng CQ, Shang JL, et al. Oxidation behavior of high-entropy alloys AlxCoCrFeNi (x = 0.15, 0.4) in supercritical water and comparison with HR3C steel. Trans Nonf Met Soc China. 2015;25:1341–1351. doi: 10.1016/S1003-6326(15)63733-5
  • Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics. 2011;19:698–706. doi: 10.1016/j.intermet.2011.01.004
  • Liu Y, Ma SH, Gao MC, et al. Tribological properties of AlCrCuFeNi2 high-entropy alloy in different conditions. Met Trans. 2016;47A:3312–3321. doi: 10.1007/s11661-016-3396-8
  • Gorr B, Azim M, Christ HJ, et al. Microstructure evolution in a new refractory high-entropy alloy W-Mo-Cr-Ti-Al. Met Trans. 2016;47A:961–970. doi: 10.1007/s11661-015-3246-0
  • Chen H, Kauffmann A, Gorr B, et al. Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al. J Alloys Compd. 2016;661:206–215. doi: 10.1016/j.jallcom.2015.11.050
  • Praveen S, Anupam A, Sirasani T, et al. Characterization of oxide dispersed AlCoCrFe high entropy alloy synthesized by mechanical alloying and spark plasma sintering. Trans Ind Inst Met. 2013;66:369–373. doi: 10.1007/s12666-013-0268-4
  • Chuang MH, Tsai MH, Wang WR, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011;59:6308–6317. doi: 10.1016/j.actamat.2011.06.041
  • Wu J, Lin S, Yeh JW, et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear. 2006;261:513–519. doi: 10.1016/j.wear.2005.12.008
  • Varalakshmi S, Kamaraj M, Murty BS. Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying. Met Trans. 2010;41A:2703–2709. doi: 10.1007/s11661-010-0344-x
  • Praveen S, Murty BS, Kottada RS. Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering. JOM. 2013;65:1797–1804. doi: 10.1007/s11837-013-0759-0
  • Ji W, Fu ZH, Wang W, et al. Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J Alloys Compd. 2014;589:61–66. doi: 10.1016/j.jallcom.2013.11.146
  • Tong C-J, Chen Y-L, Yeh J-W, et al. Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Met Trans. 2005;A36:881–893. doi: 10.1007/s11661-005-0283-0
  • Yang C, Lin J, Zeng J, et al. High-strength AlCrFeCoNi high entropy alloys fabricated by using metallic glass powder as precursor. Adv Eng Mater. 2016;18:348–353. doi: 10.1002/adem.201500339
  • Zhou YJ, Zhang Y, Wang YL, et al. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl Phys Lett. 2007;90:181904. doi: 10.1063/1.2734517
  • Gali A, George EP. Tensile properties of high- and medium-entropy alloys. Intermetallics. 2013;39:74–78. doi: 10.1016/j.intermet.2013.03.018
  • Moravcik I, Gouvea L, Cupera J, et al. Preparation and properties of medium entropy CoCrNi/boride metal matrix composite. J Alloys Compd. 2018;748:979–988. doi: 10.1016/j.jallcom.2018.03.204
  • Moravcik I, Gouvea L, Hornik V, et al. Synergic strengthening by oxide and coherent precipitate dispersions in high-entropy alloy prepared by powder metallurgy. Scripta Mater. 2018;157:24–29. doi: 10.1016/j.scriptamat.2018.07.034
  • Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science. 2014;345:1153–1158. doi: 10.1126/science.1254581
  • Otto F, Dlouhý A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013;61:5743–5755. doi: 10.1016/j.actamat.2013.06.018
  • Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 2015;96:258–268. doi: 10.1016/j.actamat.2015.06.025
  • Ai C, He F, Guo M, et al. Alloy design, micromechanical and macromechanical properties of CoCrFeNiTax eutectic high entropy alloys. J Alloys Compd. 2018;735:2653–2662. doi: 10.1016/j.jallcom.2017.12.015
  • Shun TT, Chang LY, Shiu MH. Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Mater Sci Eng. 2012;A 556:170–174. doi: 10.1016/j.msea.2012.06.075
  • Wu Z, Parish CM, Bei H. Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys. J Alloys Compd. 2015;647:815–822. doi: 10.1016/j.jallcom.2015.05.224
  • Liu SF, Wu Y, Wang HT, et al. Transformation-reinforced high-entropy alloys with superior mechanical properties via tailoring stacking fault energy. J Alloys Compd. 2019;792:444–455. doi: 10.1016/j.jallcom.2019.04.035
  • Sun Y, Chen P, Liu L, et al. Local mechanical properties of AlxCoCrCuFeNi high entropy alloy characterized using nanoindentation. Intermetallics. 2018;93:85–88. doi: 10.1016/j.intermet.2017.11.010
  • Cavaliere P, Jahantigh F, Shabani A, et al. Influence of SiO2 nanoparticles on the microstructure and mechanical properties of Al matrix nanocomposites fabricated by spark plasma sintering. Composites B. 2018;146:60–68. doi: 10.1016/j.compositesb.2018.03.045
  • Zhang KB, Fu ZY, Zhang JY, et al. Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J Alloys Compd. 2010;495(1):33–38. doi: 10.1016/j.jallcom.2009.12.010
  • Yeh J-W, Chang S-Y, Hong Y-D, et al. Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Mater Chem Phys. 2007;103(1):41–46. doi: 10.1016/j.matchemphys.2007.01.003
  • Chen Y-L, Hu Y-H, Hsieh C-A, et al. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J Alloys Compd. 2009;481(1–2):768–775. doi: 10.1016/j.jallcom.2009.03.087
  • Wang C, Ji W, Fu Z. Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy. Adv Powd Technol. 2014;25(4):1334–1338. doi: 10.1016/j.apt.2014.03.014
  • Zhang KB, Fu ZY, Zhang JY, et al. Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J Alloys Compd. 2009;485(1–2):L31–L34. doi: 10.1016/j.jallcom.2009.05.144
  • LeClair PR. Structural order and disorder in materials. Semantic Scholar. 2010. https://pdfs.semanticscholar.org/25b7/c30ca9171c2245ea36a88bacb6b8d5dec2ea.pdf.
  • Venkateswarlu K, Chandra Bose A, Rameshbabu N. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson–Hall analysis. Physica B. 2010;405(20):4256–4261. doi: 10.1016/j.physb.2010.07.020
  • Sriharitha R, Murty BS, Kottada Ravi S. Phase formation in mechanically alloyed AlxCoCrCuFeNi (x = 0.45, 1, 2.5, 5 mol) high entropy alloys. Intermetallics. 2013;32:119–126. doi: 10.1016/j.intermet.2012.08.015
  • Sriharitha R, Murty BS, Kottada Ravi S. Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys. J Alloys and Compd. 2014;583:419–426. doi: 10.1016/j.jallcom.2013.08.176
  • Wen LH, Kou HC, Li JS, et al. Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy. Intermetallics. 2009;17:266–269. doi: 10.1016/j.intermet.2008.08.012
  • Tong C-J, Chen M-R, Yeh J-W, et al. Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Met Trans. 2005;36(5):1263–1271. doi: 10.1007/s11661-005-0218-9
  • Sui H. The enhancement of solid solubility limits of AlCo intermetallic compound by high-energy ball milling. J Appl Phys. 1992;71(6):2945–2949. doi: 10.1063/1.351028
  • Yavari AR, Desré PJ, Benameur T. Mechanically driven alloying of immiscible elements. Phys Rev Lett. 1992;68:2235. doi: 10.1103/PhysRevLett.68.2235
  • Huang B-L, Perez RJ, Lavernia EJ, et al. Formation of supersaturated solid solutions by mechanical alloying. Nanostruct Mater. 1996;7(1–2):67–79. doi: 10.1016/0965-9773(95)00299-5
  • Tsai K-Y, Tsai M-H, Yeh J-W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;61(13):4887–4897. doi: 10.1016/j.actamat.2013.04.058
  • Sinha S, Nene SS, Frank M, et al. Revealing the microstructural evolution in a high entropy alloy enabled with transformation, twinning and precipitation. Materialia. 2019;6:100310. doi: 10.1016/j.mtla.2019.100310
  • Tsai CW, Chen YL, Tsai MH, et al. Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi. J Alloys Compd. 2009;486:427–435. doi: 10.1016/j.jallcom.2009.06.182
  • Ye X, Mingxing, M, Yangxiaolu C, et al. The property research on high-entropy alloy AlxFeCoNiCuCr coating by laser cladding. Phys Procedia. 2011;12:303–312. doi: 10.1016/j.phpro.2011.03.039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.