278
Views
7
CrossRef citations to date
0
Altmetric
Lens and Uvea

Cultured Human Uveal Melanocytes Express/secrete CXCL1 and CXCL2 Constitutively and Increased by Lipopolysaccharide via Activation of Toll-like Receptor 4

, , , , , & show all
Pages 1681-1694 | Received 17 Dec 2020, Accepted 03 May 2021, Published online: 26 May 2021
 

ABSTRACT

Purpose: Lipopolysaccharide (LPS) can activate Toll-like receptor 4 (TLR4) and increase the expression of CXCL1 and CXCL2, the potent neutrophils chemoattractants, in various cell types. These effects have not been previously reported in the uveal melanocytes. This study was designed to investigate the effects of LPS on the activation of TLR4 and expression of CXCL1/CXCL2 in cultured human uveal melanocytes and the relevant signal pathways.

Methods: Effects of LPS on the expression of TLR4 were tested using real-time PCR, flow cytometry and fluorescence immunostaining. Effects of LPS-induced expression/secretion of CXCL1/CXCL2 were studied using real-time PCR in cell lysates and ELISA in conditioned media of cultured uveal melanocytes. Activated NF-κB and phosphorylated MAPK signals were tested in cells with and without LPS treatment using flow cytometry. Effects of various signal inhibitors on p38, ERK1/2, JNK1/2 and NF-κB on the secretion of CXCL1/CXCL2 were tested by ELISA. The effects of neutralized antibodies of CXCL1/CXCL2 on the severity of LPS-induced uveitis were tested in a mouse model.

Results: LPS stimulation increased the expression of TLR4 mRNA and protein in culture uveal melanocytes. Constitutive secretion of CXCL1/CXCL2 was detected in uveal melanocytes and was significantly increased dose- and time-dependently by LPS stimulation. LPS mainly increased the activated NF-κB and phosphorylated JNK1/2. LPS-induced expression of CXCL1/CXCL2 was blocked by NF-κB and JNK1/2 inhibitors. The severity of LPS-induced uveitis was significantly inhibited by neutralizing antibody to CXCL1/CXCL2

Conclusions: This is the first report on the LPS-induced expression of CXCL1 and CXCL2 by uveal melanocytes via the activation of TLR4. These results suggest that uveal melanocytes may play a role in the immune reaction that eliminates the invading pathogens. Conversely, an excessive LPS-induced inflammatory reaction may also lead to the development of inflammatory ocular disorders, such as non-infectious uveitis.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Supported by the New York Eye and Ear Infirmary Research Foundation Grant, the Wise Family Foundation, and a Challenge Grant from Research to Prevent Blindness. The funding sources had no role in study design, the collection, analysis and interpretation of data, decision to publish or preparation of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 555.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.