278
Views
7
CrossRef citations to date
0
Altmetric
Lens and Uvea

Cultured Human Uveal Melanocytes Express/secrete CXCL1 and CXCL2 Constitutively and Increased by Lipopolysaccharide via Activation of Toll-like Receptor 4

, , , , , & show all
Pages 1681-1694 | Received 17 Dec 2020, Accepted 03 May 2021, Published online: 26 May 2021

References

  • Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511. doi:https://doi.org/10.1038/nri1391.
  • Cioanca AV, McCluskey PJ, Eamegdool SS, Madigan MC. Human choroidal melanocytes express functional Toll-like receptors (TLRs). Exp Eye Res. 2018;173:73–84.
  • Chang JH, McCluskey PJ, Wakefield D. Toll-like receptors in ocular immunity and the immunopathogenesis of inflammatory eye disease. Br J Ophthalmol. 2006;90:103–08.
  • Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005;17:1–14.
  • Zhou L, Liu Z, Wang Z, Yu S, Long T, Zhou X, Bao Y. Astragalus polysaccharides exerts immunomodulatory effects via TLR4-mediated MyD88-dependent signaling pathway in vitro and in vivo. Sci Rep. 2017;7:44822.
  • Roeder A, Kirschning CJ, Rupec RA, Schaller M, Korting HC. Toll-like receptors and innate antifungal responses. Trends Microbiol. 2004;12:44–49.
  • Netea MG, Ferwerda G, Van Der Graaf CA, Van Der Meer JW, Kullberg BJ. Recognition of fungal pathogens by toll-like receptors. Curr Pharm Des. 2006;12:4195–201.
  • Nosratababadi R, Bagheri V, Zare-Bidaki M, Hakimi H, Zainodini N, Kazemi Arababadi M. Toll like receptor 4: an important molecule in recognition and induction of appropriate immune responses against Chlamydia infection. Comp Immunol Microbiol Infect Dis. 2017;51:27–33.
  • Quevedo-Diaz MA, Song C, Xiong Y, Chen H, Wahl LM, Radulovic S, Medvedev AE. Involvement of TLR2 and TLR4 in cell responses to Rickettsia akari. J Leukoc Biol. 2010;88:675–85.
  • Yu L, Wang L, Chen S. Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Med. 2010;14:2592–603.
  • Mukaida N, Ketlinsky SA. Matsushima. Interleukin-8 and other CXC chemokines. In: Thomson AW, Lotze MT editors. The Cytokine Handbook. 4th. San Diego (CA): Elsevier Science Ltd; 2003. p. 1049–81.
  • Mai K, Chui JJ, Di Girolamo N, McCluskey PJ, Wakefield D. Role of toll-like receptors in human iris pigment epithelial cells and their response to pathogen-associated molecular patterns. J Inflamm (Lond). 2014;11:20.
  • Pacholewska A, Marti E, Leeb T, Jagannathan V, Gerber V. LPS-induced modules of co-expressed genes in equine peripheral blood mononuclear cells. BMC Genomics. 2017;18h:34.
  • Shuto T, Kato K, Mori Y, Viriyakosol S, Oba M, Furuta T, Okiyoneda T, Arima H, Suico MA, Kai H. Membrane-anchored CD14 is required for LPS-induced TLR4 endocytosis in TLR4/MD-2/CD14 overexpressing CHO cells. Biochem Biophys Res Commun. 2005;338:1402–09.
  • Lin F-Y, Chen Y-H, Chen Y-L, Wu T-C, Li C-Y, Chen J-W, Lin S-J. Ginkgo biloba extract inhibits endotoxin-induced human aortic smooth muscle cell proliferation via suppression of toll-like receptor 4 expression and NADPH oxidase activation. J Agric Food Chem. 2007;55:1977–84.
  • Chui JJ, Li MW, Di Girolamo N, Chang JH, McCluskey PJ, Wakefield D. Iris pigment epithelial cells express a functional lipopolysaccharide receptor complex. Invest Ophthalmol Vis Sci. 2010;51:2558–67.
  • Chang KT, Lin HY, Kuo CH, Hung CH. Tacrolimus suppresses atopic dermatitis-associated cytokines and chemokines in monocytes. J Microbiol Immunol Infect. 2016;49:409–16.
  • Shen J, Xu L, Liu Z, Li N, Wang L, Lv Z, Fung M, Wu Z, Sun X. Gene expression profile of LPS-stimulated dendritic cells induced by a recombinant Sj16 (rSj16) derived from Schistosoma japonicum. Parasitol Res. 2014;113:3073–83.
  • Becker S, Quay J, Koren HS, Haskill JS. Constitutive and stimulated MCP-1, GRO alpha, beta, and gamma expression in human airway epithelium and bronchoalveolar macrophages. Am J Physiol. 1994;266:L278–86.
  • Huang CH, Jan RL, Kuo CH, Chu YT, Wang WL, Lee MS, Chen HN, Hung CH. Natural flavone kaempferol suppresses chemokines expression in human monocyte THP-1 cells through MAPK pathways. J Food Sci. 2010;75:H254–9.
  • Liu S, Lu C, Liu Y, Zhou X, Sun L, Gu Q, Shen G, Guo A. Hyperbaric oxygen alleviates the inflammatory response induced by LPS through Inhibition of F-κB/MAPKs-CCL2/CXCL1 signaling pathway in cultured astrocytes. Inflammation. 2018;41:2003–11.
  • Reine TM, Vuong TT, Jenssen TG, Kolset SO. Serglycin secretion is part of the inflammatory response in activated primary human endothelial cells in vitro. Biochim Biophys Acta. 2014;1840:2498–505.
  • Guijarro-Muñoz I, Compte M, Álvarez-Cienfuegos A, Álvarez-Vallina L, Sanz L. Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway and proinflammatory response in human pericytes. J Biol Chem. 2014;289:2457–68.
  • Leow-Dyke S, Allen C, Denes A, Nilsson O, Maysami S, Bowie AG, Rothwell NJ, Pinteaux E. Neuronal Toll-like receptor 4 signaling induces brain endothelial activation and neutrophil transmigration in vitro. J Neuroinflammation. 2012;9:230.
  • Wijesuriya YK, Lappas M. Potent anti-inflammatory effects of honokiol in human fetal membranes and myometrium. Phytomedicine. 2018;49:11–22.
  • Jönsson D, Amisten S, Bratthall G, Holm A, Nilsson BO. LPS induces GROalpha chemokine production via NF-kappaB in oral fibroblasts. Inflamm Res. 2009;58:791–96.
  • Qiu Y, Shil PK, Zhu P, Yang H, Verma A, Lei B, Li Q. Angiotensin-converting Enzyme 2 (ACE2) activator diminazene aceturate ameliorates endotoxin-induced uveitis in mice. Invest Ophthalmol Vis Sci. 2014;55:3809–18.
  • Yadav UC, Ramana KV. Endotoxin-induced uveitis in rodents. Methods Mol Biol. 2013;1031:155–62.
  • Van Hove I, Lefevere E, De Groef L, Sergeys J, Salinas-Navarro M, Libert C, Vandenbroucke R, Moons L. MMP-3 deficiency alleviates endotoxin-induced acute inflammation in the posterior eye segment. Int J Mol Sci. 2016;17:E1825.
  • Li X, Gu X, Boyce TM, Zheng M, Reagan AM, Qi H, Mandal N, Cohen AW, Callegan MC, Carr DJ, et al. Caveolin-1 increases proinflammatory chemoattractants and blood-retinal barrier breakdown but decreases leukocyte recruitment in inflammation. Invest Ophthalmol Vis Sci. 2014;55:6224–34.
  • Mo JS, Matsukawa A, Ohkawara S, Yoshinaga M. CXC chemokine GRO is essential for neutrophil infiltration in LPS-induced uveitis in rabbits. Exp Eye Res. 2000;70:221–26.
  • Kalariya NM, Shoeb M, Ansari NH, Srivastava SK, Ramana KV. Antidiabetic drug metformin suppresses endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci. 2012;53:3431–40.
  • Geiser T, Dewald B, Ehrengruber MU, Clark-Lewis I, Baggiolini M. The interleukin-8-related chemotactic cytokines GRO alpha, GRO beta, and GRO gamma activate human neutrophil and basophil leukocytes. J Biol Chem. 1993;268:15419–24.
  • El-Asrar AMA, Berghmans N, Al-Obeidan SA, Gikandi PW, Opdenakker G, Van Damme J, Struyf S. Differential CXC and CX3C chemokine expression profiles in aqueous humor of patients with specific endogenous uveitic entities. Invest Ophthalmol Vis Sci. 2018;59:2222–38.
  • Son MY, Kim YD, Seol B, Lee MO, Na HJ, Yoo B, Chang JS, Cho YS. Biomarker discovery by modeling Behçet’s disease with patient-specific human induced pluripotent stem cells. Stem Cells Dev. 2017;26:133–45.
  • Abu El-Asrar AM, Struyf S, Kangave D, Al-Obeidan SA, Opdenakker G, Geboes K, Van Damme J. Cytokine and CXC chemokine expression patterns in aqueous humor of patients with presumed tuberculous uveitis. Cytokine. 2012;59:377–81.
  • Agrawal R, Balne PK, Wei X, Bijin VA, Lee B, Ghosh A, Narayanan R, Agrawal M, Connolly J. Cytokine profiling in patients with exudative age-related macular degeneration and polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2019;60:376–82.
  • Schoenberger SD, Kim SJ, Sheng J, Rezaei KA, Lalezary M, Cherney E. Increased prostaglandin E2 (PGE2) levels in proliferative diabetic retinopathy, and correlation with VEGF and inflammatory cytokines. Invest Ophthalmol Vis Sci. 2012;53:5906–11.
  • Lange CAK, Stavrakas P, Luhmann UFO, De Silva DJ, Ali RR, Gregor ZJ, Bainbridge JWB. Intraocular oxygen distribution in advanced proliferative diabetic retinopathy. Am J Ophthalmol. 2011;152:406–2.e3.
  • Murata M, Noda K, Yoshida S, Saito M, Fujiya A, Kanda A, Ishida S. Unsaturated aldehyde acrolein promotes retinal glial cell migration. Invest Ophthalmol Vis Sci. 2019;60:4425–35.
  • Hu DN, McCormick SA, Ritch R, Pelton-Henrion K. Studies of human uveal melanocytes in vitro: isolation, purification and cultivation of human uveal melanocytes. Invest Ophthalmol Vis Sci. 1993;33:2210–19.
  • Hu DN, McCormick SA, Ritch R. Studies of human uveal melanocytes in vitro: growth regulation of cultured human uveal melanocytes. Invest Ophthalmol Vis Sci. 1993;34:2220–27.
  • Hu DN, Chen M, Zhang DY, Ye F, McCormick SA, Chan CC. Interleukin-1β increases baseline expression and secretion of interleukin-6 by human uveal melanocytes in vitro via p38 MAPK/NF-κB pathway. Invest Ophthalmol Vis Sci. 2011;52:3767–74.
  • Hu DN, Bi M, Zhang DY, Ye F, McCormick SA, Chan CC. Constitutive and LPS-induced expression of MCP-1 and IL-8 by human uveal melanocytes in vitro and relevant signal pathways. Invest Ophthalmol Vis Sci. 2014;55:5760–69.
  • Chu SC, Hu DN, Yang SF, Yang PY, Hsieh YS, Huang SM, Yu G, McCormick SA. Uveal melanocytes produce matrix metalloproteinases-2 and −9 in vitro. Pigment Cell Res. 2004;17:636–42.
  • Hu DN, Rosen RB, Chan CC, Yang WE, Yang SF. Uveal melanocytes express high constitutive levels of MMP-8 which can be upregulated by TNF-α via the MAPK pathway. Exp Eye Res. 2018;175:181–91.
  • Lee HS, Kwon SH, Ham JE, Lee JY, Kim DH, Shin KH, Choi SH. Zaprinast activates MAPKs, NFκB, and Akt and induces the expressions of inflammatory genes in microglia. Int Immunopharmacol. 2012;l:232–41.
  • Jaffe GJ, Richmond A, Van Le L, Shattuck RL, Cheng QC, Wong F, Roberts W. Expression of three forms of melanoma growth stimulating activity (MGSA)/gro in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1993;34:2776–85.
  • Jehs T, Faber C, Udsen MS, Jager MJ, Clark SJ, Nissen MH. Induction of chemokine secretion and monocyte migration by human choroidal melanocytes in response to proinflammatory cytokines. Invest Ophthalmol Vis Sci. 2016;57:6568–79.
  • Hu DN, Savage H, Roberts JE. Uveal melanocytes, ocular pigment epithelium and Mueller cells in culture: in vitro toxicology. Inter J Toxicol. 2002;21:465–72.
  • Kezic J, Taylor S, Gupta S, Planck SR, Rosenzweig HL, Rosenbaum JT. Endotoxin-induced uveitis is primarily dependent on radiation-resistant cells and on MyD88 but not TRIF. J Leukoc Biol. 2011;90:305–11.
  • Dil N, Queshi MA. Involvement of lipopolysaccharide related receptors and nuclear factor kappa B in differential expression of inducible nitric oxide synthase in chicken macrophages from different genetic backgrounds. Vet Immunol Immunopathol. 2002;88:149–61.
  • Wu W, Alexis NE, Chen X, Bromberg PA, Peden DB. Involvement of mitogen-activated protein kinases and NFkappaB in LPS-induced CD40 expression on human monocytic cells. Toxicol Appl Pharmacol. 2008;228:135–43.
  • Wang Y, Zhang MX, Meng X, Wang Y, Zhang MX, Meng X, Liu FQ, Yu GS, Zhang C, Sun T, et al. Atorvastatin suppresses LPS-induced rapid upregulation of Toll-like receptor 4 and its signaling pathway in endothelial cells. Am J Physiol Heart Circ Physiol. 2011;300:H1743–52.
  • Ha J, Lee Y, Kim HH. CXCL2 mediates lipopolysaccharide-induced osteoclastogenesis in RANKL-primed precursors. Cytokine. 2011;55:48–55.
  • Kovac A, Erickson MA, Banks WA. Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflammation. 2011;8:139.
  • Gentile RC, Shukla S, Shah M, Ritterband DC, Engelbert M, Davis A, Hu DN. Microbiological spectrum and antibiotic sensitivity in endophthalmitis: a 25-Year review. Ophthalmology. 2014;121:34–42.
  • Deshmukh D, Chakrabarti M, Jayasudha R, Ali MH, Tyagi M, Sharma S, Joseph J. Elevated cytokine levels in vitreous as biomarkers of disease severity in infectious endophthalmitis. PLoS One. 2018;13:e0205292.
  • Kato Y, Yamamoto T. Serum levels of GRO-α are elevated in association with disease activity in patients with Behçet’s disease. Int J Dermatol. 2012;51:286–89.
  • El-Asrar AM, Al-Obeidan SS, Kangave D, Geboes K, Opdenakker G, Van Damme J, Struyf S. CXC chemokine expression profiles in aqueous humor of patients with different clinical entities of endogenous uveitis. Immunobiology. 2011;216:1004–09.
  • Mérida S, Palacios E, Navea A, Bosch-Morell F. Macrophages and uveitis in experimental animal models. Mediators Inflamm. 2015;2015:671417.
  • Toguri JT, Lehmann C, Laprairie RB, Szczesniak AM, Zhou J, Denovan-Wright EM, Kelly ME. Anti-inflammatory effects of cannabinoid CB(2) receptor activation in endotoxin-induced uveitis. Br J Pharmacol. 2014;171:1448–61.
  • Newman AM, Gallo NB, Hancox LS, Miller NJ, Radeke CM, Maloney MA, Cooper JB, Hageman GS, Anderson DH, Johnson LV, et al. Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks. Genome Med. 2012;4:16.
  • Symeonidis C, Androudi S, Georgalas I, Tzamalis A, Chalvatzis N, Rotsos T, Souliou E, Diza E, Dimitrakos SA. Chemokine CXCL-1: activity in the vitreous during proliferative vitreoretinopathy. Clin Exp Immunol. 2015;181:338–42.
  • Marshall J, Hussain AA, Starita C, Moore DJ, Patmore AL. Aging and Bruch’s membrane. In: Marmor MF, Wolfensberger, editors. The retinal pigment epithelium: function and diseases. New York: Oxford University Press; 1998. p. 669–92.
  • De Filippo K, Henderson RB, Laschinger M, Hogg N. Neutrophil chemokines KC and macrophage-inflammatory protein-2 are newly synthesized by tissue macrophages using distinct TLR signaling pathways. J Immunol. 2008;180:4308–15.
  • Zwijnenburg PJG, Polfliet MMJ, Florquin S, Van Den Berg TK, Dijkstra CD, Van Deventer SJH, Roord JJ, Van Der Poll T, Van Furth AM. CXC-chemokines KC and macrophage inflammatory protein-2 (MIP-2) synergistically induce leukocyte recruitment to the central nervous system in rats. Immunol Lett. 2003;85:1–4.
  • Girbl T, Lenn T, Perez L, Rolas L, Barkaway A, Thiriot A, Fresno CD, Lynam E, Hub E, Thelen M, et al. Distinct compartmentalization of the chemokines CXCL1 and CXCL2 and the atypical receptor ACKR1 determine discrete stages of neutrophil diapedesis. Immunity. 2018;49:1062–1076.e6.
  • De Filippo K, Dudeck A, Hasenberg M, Nye E, Van Rooijen N, Gunzer KM, Roers A, Hogg N. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood. 2013;121:4930–37.
  • Nair P, Gaga M, Zervas E, Alagha K, Hargreave FE, O’Byrne PM, Stryszak P, Gann L, Sadeh J, Chanez P. Study investigators. Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial. Clin Exp Allergy. 2012;42:1097–103.
  • Park H, Hong J, Yin Y, Joo Y, Kim Y, Shin J, Kwon HH, Shin N, Shin HJ, Beom J, et al. TAP2, a peptide antagonist of Toll-like receptor 4, attenuates pain and cartilage degradation in a monoiodoacetate-induced arthritis rat model. Sci Rep. 2020;10:17451.
  • Arepalli SK, Choi M, Jung J-K, Lee H. Novel NF-κB inhibitors: a patent review (2011-2014). Expert Opin Ther Pat. 2015;25:319–34.
  • Zaoui IE, Touchard E, Berdugo M, Abadie C, Kowalczuk L, Deloche C, Zhao M, Naud M-C, Combette J-M, Behar-Cohen F. Subconjunctival injection of XG-102, a c-Jun N-terminal kinase inhibitor peptide, in the treatment of endotoxin-induced uveitis in rats. J Ocul Pharmacol Ther. 2015;31:17–24.
  • Wan C-R, Kapik B, Wykoff CC, Henry CR, Barakat MR, Shah M, Andino V, Ciulla TA. Clinical characterization of suprachoroidal injection procedure utilizing a microinjector across three retinal disorders. Transl Vis Sci Technol. 2020;9:27.
  • Shen J, Kim J, Tzeng SY, Ding K, Hafiz Z, Long D, Wang J, Green JJ, Campochiaro PA. Suprachoroidal gene transfer with nonviral nanoparticles. Sci Adv. 2020;6:eaba1606.
  • Habot-Wilner Z, Noronha G, Wykoff CC. Suprachoroidally injected pharmacological agents for the treatment of chorio-retinal diseases: a targeted approach. Acta Ophthalmol. 2019;97:460–72.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.