333
Views
26
CrossRef citations to date
0
Altmetric
Articles

Experimental investigation on thermal conductivity of fly ash nanofluid and fly ash-Cu hybrid nanofluid: prediction and optimization via ANN and MGGP model

ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 182-195 | Published online: 03 Jun 2021
 

Abstract

In the present work, the thermal conductivity (TC) of stable water base fly ash and fly ash-Copper (80:20 vol.%) nanofluid was determined experimentally in the temperature range of 30–60 °C for the volume concentration range of 0–4.0%. The two-step method was applied to prepare the nanofluids. The outcomes revealed that the TC of both the nanofluids augmented with the temperature and concentration, and also hybrid nanofluid had greater TC compared to the fly ash nanofluid and water. A new correlation was proposed for the calculation of the TC of these nanofluids based on obtained data. The maximum TC ratio of 1.32 and 1.50 obtained for a concentration of 4 vol.% of fly ash and hybrid nanofluid at 60 °C. In addition, to effectively predict and optimize the TC of water-based fly ash and studied hybrid nanofluid, multi-gene genetic programming (MGGP), and artificial neural network (ANN) approaches were applied. The comparative analysis showed the excellent ability of the ANN and MGGP model to predict the TC of fly ash and hybrid nanofluid with the regression coefficient (R) values of 0.9969 and 0.9966, respectively.

Disclosure statement

The authors declared that there is no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.