333
Views
26
CrossRef citations to date
0
Altmetric
Articles

Experimental investigation on thermal conductivity of fly ash nanofluid and fly ash-Cu hybrid nanofluid: prediction and optimization via ANN and MGGP model

ORCID Icon, ORCID Icon, , ORCID Icon &

References

  • Akhgar, A., D. Toghraie, N. Sina, and M. Afrand. 2019. Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/Water-ethylene glycol hybrid nanofluid. Powder Technology 355:602–10. doi:10.1016/j.powtec.2019.07.086.
  • Alawi, O. A., N. A. C. Sidik, H. W. Xian, T. H. Kean, and S. N. Kazi. 2018. Thermal conductivity and viscosity models of metallic oxides nanofluids. International Journal of Heat and Mass Transfer 116:1314–25. doi:10.1016/j.ijheatmasstransfer.2017.09.133.
  • Ariana, M. A., B. Vaferi, and G. Karimi. 2015. Prediction of thermal conductivity of alumina water-based nanofluids by artificial neural networks. Powder Technology 278:1–10. doi:10.1016/j.powtec.2015.03.005.
  • Asadi, A.,. I. M. Alarifi, V. Ali, and H. M. Nguyen. 2019. An experimental investigation on the effects of ultrasonication time on stability and thermal conductivity of MWCNT-water nanofluid: finding the optimum ultrasonication time. Ultrasonics Sonochemistry 58:104639. doi:10.1016/j.ultsonch.2019.104639.
  • Azmi, W. H., K. V. Sharma, R. Mamat, G. Najafi, and M. S. Mohamad. 2016. The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids–a review. Renewable and Sustainable Energy Reviews 53:1046–58. doi:10.1016/j.rser.2015.09.081.
  • Bakthavatchalam, B.,. N. B. Shaik, and P. B. Hussain. 2020. An artificial intelligence approach to predict the thermophysical properties of MWCNT nanofluids. Processes 8 (6):693. doi:10.3390/pr8060693.
  • Boroomandpour, A., D. Toghraie, and M. Hashemian. 2020. A comprehensive experimental investigation of thermal conductivity of a ternary hybrid nanofluid containing MWCNTs-titania-zinc oxide/water-ethylene glycol (80: 20) as well as binary and mono nanofluids. Synthetic Metals 268:116501. doi:10.1016/j.synthmet.2020.116501.
  • Corcione, M. 2011. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Conversion and Management 52 (1):789–93. doi:10.1016/j.enconman.2010.06.072.
  • Dalkılıç, A. S., G. Yalçın, B. O. Küçükyıldırım, S. Öztuna, A. A. Eker, C. Jumpholkul, S. Nakkaew, and S. Wongwises. 2018. Experimental study on the thermal conductivity of water-based CNT-SiO2 hybrid nanofluids. International Communications in Heat and Mass Transfer 99:18–25. doi:10.1016/j.icheatmasstransfer.2018.10.002.
  • Dehkordi, B. A. F., and A. Abdollahi. 2018. Experimental investigation toward obtaining the effect of interfacial solid-liquid interaction and base fluid type on the thermal conductivity of CuO-loaded nanofluids. International Communications in Heat and Mass Transfer 97:151–62. doi:10.1016/j.icheatmasstransfer.2018.08.001.
  • Gandomi, A. H., and A. H. Alavi. 2011. Multi-stage genetic programming: A new strategy to nonlinear system modeling. Information Sciences 181 (23):5227–39. doi:10.1016/j.ins.2011.07.026.
  • Garg, A., A. Garg, K. Tai, and S. Sreedeep. 2014. An integrated SRM-multi-gene genetic programming approach for prediction of factor of safety of 3-D soil nailed slopes. Engineering Applications of Artificial Intelligence 30:30–40. doi:10.1016/j.engappai.2013.12.011.
  • Hojjat, M., S. G. Etemad, R. Bagheri, and J. Thibault. 2011. Thermal conductivity of non-Newtonian nanofluids: Experimental data and modeling using neural network. International Journal of Heat and Mass Transfer 54 (5–6):1017–23. doi:10.1016/j.ijheatmasstransfer.2010.11.039.
  • Hussein, A. M., K. V. Sharma, R. A. Bakar, and K. Kadirgama. 2014. A review of forced convection heat transfer enhancement and hydrodynamic characteristics of a nanofluid. Renewable and Sustainable Energy Reviews 29:734–43. doi:10.1016/j.rser.2013.08.014.
  • Jamei, M., and I. Ahmadianfar. 2020. A rigorous model for prediction of viscosity of oil-based hybrid nanofluids. Physica A: Statistical Mechanics and Its Applications 556:124827. doi:10.1016/j.physa.2020.124827.
  • Kanti, P., K. V. Sharma, C. G. Ramachandra, and W. H. Azmi. 2020. Experimental determination of thermophysical properties of Indonesian fly-ash nanofluid for heat transfer applications. Particulate Science and Technology 1:1–10. doi:10.1080/02726351.2020.1806971.
  • Kanti, P., K. V. Sharma, C. G. Ramachandra, and M. Gurumurthy. 2020. A CFD study on fly ash nanofluid heat transfer behavior in a circular tube. IOP Conference Series: Materials Science and Engineering 1013:012030. doi:10.1088/1757-899X/1013/1/012030.
  • Kanti, P., K. V. Sharma, C. G. Ramachandra, M. Gurumurthy, and R. Raghava. 2021. Numerical study on fly ash–Cu hybrid nanofluid heat transfer characteristics. IOP Conference Series: Materials Science and Engineering 1013:012031. 10.1088/1757-899X/1013/1/012031
  • Kanti, P., K. V. Sharma, C. G. Ramachandra, and M. Gupta. 2020. Thermal performance of fly ash nanofluids at various inlet fluid temperatures: An experimental study. International Communications in Heat and Mass Transfer 119:104926. doi:10.1016/j.icheatmasstransfer.2020.104926.
  • Kanti, P., K. V. Sharma, C. G. Ramachandra, and A. A. Minea. 2020. Effect of ball milling on the thermal conductivity and viscosity of Indian coal fly ash nanofluid. Heat Transfer 49 (8):4475–90. doi:10.1002/htj.21836.
  • Kanti, P., K. V. Sharma, C. G. Ramachandra, and B. Panitapu. 2020. Stability and thermophysical properties of fly ash nanofluid for heat transfer applications. Heat Transfer 49 (8):4722–37. doi:Rg/10.1002/htj.21849.
  • Kanti, P., K. V. Sharma, M. Revanasiddappa, C. G. Ramachandra, and S. Akilu. 2020. Thermophysical properties of fly ash–Cu hybrid nanofluid for heat transfer applications. Heat Transfer 49 (8):4491–20. doi:10.1002/htj.21837.
  • Kanti, P., K. V. Sharma, Z. Said, and E. Bellos. 2021. Numerical study on the thermo-hydraulic performance analysis of fly ash nanofluid. Journal of Thermal Analysis and Calorimetry 166:1–13. doi:10.1007/s10973-020-10533-0.
  • Kanti, P., K. V. Sharma, Z. Said, and V. Kesti. 2021. Entropy generation and friction factor analysis of fly ash nanofluids flowing in a horizontal tube: Experimental and numerical study. International Journal of Thermal Sciences 166:106972. doi:10.1016/j.ijthermalsci.2021.106972.
  • Karimipour, A., S. A. Bagherzadeh, A. Taghipour, A. Abdollahi, and M. R. Safaei. 2019. A novel nonlinear regression model of SVR as a substitute for ANN to predict conductivity of MWCNT-CuO/water hybrid nanofluid based on empirical data. Physica A: Statistical Mechanics and Its Applications. 521:89–97. doi:10.1016/j.physa.2019.01.055.
  • Khodadadi, H., D. Toghraie, and A. Karimipour. 2019. Effects of nanoparticles to present a statistical model for the viscosity of MgO-Water nanofluid. Powder Technology 342:166–80. doi:10.1016/j.powtec.2018.09.076.
  • Koza, J. R., and J. R. Koza. 1992. Genetic programming: On the programming of computers by means of natural selection. Vol. 1. Stanford, CA: Stanford University.
  • Kurt, H., and M. Kayfeci. 2009. Prediction of thermal conductivity of ethylene glycol–water solutions by using artificial neural networks. Applied Energy 86 (10):2244–8. doi:10.1016/j.apenergy.2008.12.020.
  • Longo, G. A., C. Zilio, E. Ceseracciu, and M. Reggiani. 2012. Application of artificial neural network (ANN) for the prediction of thermal conductivity of oxide-water nanofluids. Nano Energy 1 (2):290–6. doi:10.1016/j.nanoen.2011.11.007.
  • Mallick, S. S., A. Mishra, and L. Kundan. 2013. An investigation into modelling thermal conductivity for alumina–water nanofluids. Powder Technology 233:234–44. doi:10.1016/j.powtec.2012.08.003.
  • Pourrajab, R., Ahmadianfar, I., and M. Jamei, Behbahani . 2020. A meticulous intelligent approach to predict thermal conductivity ratio of hybrid nanofluids for heat transfer applications. Journal of Thermal Analysis and Calorimetry. doi:10.1007/s10973-020-10047-9.
  • Rostami, S., D. Toghraie, B. Shabani, N. Sina, and P. Barnoon. 2021. Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs). Journal of Thermal Analysis and Calorimetry 143 (2):1097–105. doi:10.1007/s10973-020-09458-5.
  • Ruhani, B., P. Barnoon, and D. Toghraie. 2019. Statistical investigation for developing a new model for rheological behavior of Silica–ethylene glycol/Water hybrid Newtonian nanofluid using experimental data. Physica A: Statistical Mechanics and Its Applications 525:616–27. doi:10.1016/j.physa.2019.03.119.
  • Saeedi, A. H., M. Akbari, and D. Toghraie. 2018. An experimental study on the rheological behavior of a nanofluid containing oxide nanoparticle and proposing a new correlation. Physica E: Low-Dimensional Systems and Nanostructures 99:285–93. doi:10.1016/j.physe.2018.02.018.
  • Said, Z., M. A. Abdelkareem, H. Rezk, A. M. Nassef, and H. Z. Atwany. 2020. Stability, thermophysical and electrical properties of synthesized carbon nanofiber and reduced-graphene oxide-based nanofluids and their hybrid along with fuzzy modeling approach. Powder Technology 364:795–809. doi:10.1016/j.powtec.2020.02.026.
  • Sedeh, R. N., A. Abdollahi, and A. Karimipour. 2019. Experimental investigation toward obtaining nanoparticles’ surficial interaction with base fluid components based on measuring the thermal conductivity of nanofluids. International Communications in Heat and Mass Transfer 103:72–82. doi:10.1016/j.icheatmasstransfer.2019.02.016.
  • Suresh, S.,. K. P. Venkitaraj, P. Selvakumar, and M. Chandrasekar. 2011. Synthesis of Al2O3–Cu/water hybrid nanofluids using two-step method and its thermophysical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 388 (1–3):41–8. doi:10.1016/j.colsurfa.2011.08.005.
  • Tahani, M., M. Vakili, and S. Khosrojerdi. 2016. Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid. International Communications in Heat and Mass Transfer 76:358–65. doi:10.1016/j.icheatmasstransfer.2016.06.003.
  • Tiara, A. M., S. Chakraborty, I. Sarkar, A. Ashok, S. K. Pal, and S. Chakraborty. 2017. Heat transfer enhancement using surfactant-based alumina nanofluid jet from a hot steel plate. Experimental Thermal and Fluid Science. 89:295–303. doi:10.1016/j.expthermflusci.2017.08.023.
  • Timofeeva, E. V., J. L. Routbort, and D. Singh. 2009. Particle shape effects on thermophysical properties of alumina nanofluids. Journal of Applied Physics 106 (1):014304. doi:10.1063/1.3155999.
  • Toghraie, D., N. Sina, N. A. Jolfaei, M. Hajian, and M. Afrand. 2019. Designing an Artificial Neural Network (ANN) to predict the viscosity of Silver/Ethylene glycol nanofluid at different temperatures and volume fraction of nanoparticles. Physica A: Statistical Mechanics and Its Applications 534:122142. doi:10.1016/j.physa.2019.122142.
  • Xia, G., H. Jiang, R. Liu, and Y. Zhai. 2014. Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids. International Journal of Thermal Sciences 84:118–24. doi:10.1016/j.ijthermalsci.2014.05.004.
  • Xian-Ju, W., and L. Xin-Fang. 2009. Influence of pH on nanofluids' viscosity and thermal conductivity. Chinese Physics Letters 26 (5):056601. doi:10.1088/0256-307X/26/5/056601.
  • Yashawantha, K. M., A. Asif, G. R. Babu, and M. K. Ramis. 2021. Rheological behavior and thermal conductivity of graphite–ethylene glycol nanofluid. Journal of Testing and Evaluation. doi:10.1520/JTE:20190255.
  • Yashawantha, K. M., and A. V. Vinod. 2020. ANN modeling and experimental investigation on effective thermal conductivity of ethylene glycol: Water nanofluids. Journal of Thermal Analysis and Calorimetry 140:1–22. doi:10.1007/s10973-020-09756-y.
  • Zadeh, A. D., and D. Toghraie. 2018. Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions. Journal of Thermal Analysis and Calorimetry 131 (2):1449–61. doi:10.1007/s10973-017-6696-3.
  • Zhao, N., and Z. Li. 2017. Experiment and artificial neural network prediction of thermal conductivity and viscosity for alumina-water nanofluids. Materials 10 (5):552–62. doi:10.3390/ma10050552.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.