284
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Developed fungal–bacterial biofilms as a novel tool for bioremoval of hexavelant chromium from wastewater

, , &
Pages 418-427 | Received 21 Aug 2013, Accepted 21 Oct 2013, Published online: 13 Jan 2014
 

Abstract

Remediation measures for hexavalent chromium [Cr(VI)] are required for a safe environment. As a recent development in microbiology, bacterial biofilms are being studied as effective bioremediation agents. When bacteria are in fungal surface-attached biofilm mode, they are called fungal–bacterial biofilms (FBBs). They have not been tested for bioremediation so far. Hence, this study was conducted to develop FBBs and glass-wool-attached bacterial biofilms (BBs), and to evaluate Cr(VI) tolerability and removal of bacterial monocultures, BBs and FBBs. FBBs showed a significantly high level of Cr(VI) tolerance and resistance compared with its BBs or monocultures. After 10 days, up to 90% of Cr(VI) had been removed, which was significantly higher than that of BBs or its monocultures. Thus, it is clear that FBBs can be used as a novel tool to decontaminate Cr(VI) both in situ and ex situ.

Acknowledgements

Prof. T. Pradeep and Dr Sajan Lal at IIT, Madras, for their support on SEM. Ms Sara Gunaratne, Ms K. Karunaratne and Mr M. A. Lal of the unit helped in the laboratory preparations and analyses.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 730.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.