284
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Developed fungal–bacterial biofilms as a novel tool for bioremoval of hexavelant chromium from wastewater

, , &
Pages 418-427 | Received 21 Aug 2013, Accepted 21 Oct 2013, Published online: 13 Jan 2014

References

  • Ayres RU. Toxic heavy metals: materials cycle optimization. Proc Natl Acad Sci USA. 1992;89:815–820. doi: 10.1073/pnas.89.3.815
  • Bartlett RJ. Chromium cycling in soils and water: links, gaps and methods. Environ Health Perspect. 1991;92:17–24. doi: 10.1289/ehp.919217
  • Beltrán-Prieto JC, Veloz-Rodríguez R, Pérez-Pérez MC, Navarrete-Bolaños JL, Vázquez-Nava E, Jiménez-Islas H, Botello-Álvarez JE. Chromium recovery from solid leather waste by chemical treatment and optimisation by response surface methodology. Chem Ecol. 2011;28:89–102.
  • Chen H, Li X, Xu Z. Cr(VI) remediation by enriched sediment with anthraquinone-2,6-disulfonate as electron shuttles. Phys Chem Earth. 2011;36:451–454. doi: 10.1016/j.pce.2010.05.002
  • Mohan D, Pittman CUJr. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater. 2006;137:762–811.
  • Lovley D. Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J Ind Microbiol. 1995;14:85–93. doi: 10.1007/BF01569889
  • Bennett RM, Cordero PRF, Bautista GS, Dedeles GR. Reduction of hexavalent chromium using fungi and bacteria isolated from contaminated soil and water samples. Chem Ecol. 2013;29:320–328. doi: 10.1080/02757540.2013.770478
  • El Nemr A, El Sikaily A, Khaled A, Abdelwahab O. Removal of toxic chromium(VI) from aqueous solution by activated carbon using Casuarina equisetifolia. Chem Ecol. 2007;23:119–129. doi: 10.1080/02757540701197754
  • López-González H, Serrano-Gómez J, Olguín MT. Ectodermis of paddle cactus (Opuntia spp.) as biosorbent of chromium (VI) from aqueous solutions. Chem Ecol. 2012;28:457–467. doi: 10.1080/02757540.2012.666530
  • Hawley EL, Deeb RA, Kavanaugh MC, Jacobs RGJ. Treatment technologies for chromium(VI). In: Guertin J, Jacobs JA, Avakian CP, editor. Chromium, VI: Handbook. Boca Raton: CRC Press; 2004. p. 273–303.
  • Sharma I, Goyal D. Adsorption kinetics: bio removal of trivalent chromium from tannery effluent by Aspergillus sp Biomass. Res J Environ Sci. 2010;4:1–12. doi: 10.3923/rjes.2010.1.12
  • Ahluwalia SS, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol. 2007;98:2243–2257. doi: 10.1016/j.biortech.2005.12.006
  • Harrison JJ, Ceri H, Turner RJ. Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol. 2007;5:928–938. doi: 10.1038/nrmicro1774
  • Pastorella G, Gazzola G, Guadarrama S, Marsil E. Biofilms: applications in bioremediation. In: Lear G, Lewis GD, editor. Microbial biofilms: current research and application. UK: Caister Academic Press; 2012. p. 73–98.
  • Elias S, Banin E. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev. 2012;36:990–1004.
  • Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental and food microbiologists. Microbiol Mol Biol Rev. 2011;75.
  • Seneviratne G, Zavahir JS, Bandara WMMS, Weerasekara MLMAW. Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol. 2008;24:739–743. doi: 10.1007/s11274-007-9539-8
  • Koomnok C, Teaumroong N, Rerkasemc B, Lumyonga S. Diazotroph endophytic bacteria in cultivatedand wild rice in Thailand. Sci Asia. 2007;33:429–435. doi: 10.2306/scienceasia1513-1874.2007.33.429
  • Zuberer DA, Silver WS. Biological dinitrogen fixation (acetylene reduction) associated with Florida Mangroves. Appl Environ Microbiol. 1978;35:567–575.
  • O'Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R. Genetic approaches to study of biofilms. In: Ron JD, editor. Methods enzymol. Academic Press; 1999. p. 91–109.
  • Holt GH, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergye's Manual of determinative Bacteriology, 9th ed. Baltimore, USA: Williams and Wilkings; 1994.
  • Seneviratne G, Jayasekara APDA, De Silva MSDL, Abeysekera UP. Developed microbial biofilms can restore deteriorated conventional agricultural soils. Soil Biol Biochem. 2011;43:1059–1062. doi: 10.1016/j.soilbio.2011.01.026
  • Adam J, Přibil R. Extractions with long-chain amines—VIII: colorimetric determination of chromium(VI) with diphenylcarbazide. Talanta. 1974;21:616–618. doi: 10.1016/0039-9140(74)80194-3
  • Xu KD, Stewart PS, Xia F, Huang C-T, Mcfeters GA. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol. 1998;64:4035–4039.
  • Huang C-T, Xu KD, Mcfeters GA, Stewart PS. Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl Environ Microbiol. 1998;64:1526–1531.
  • Beyenal H, Lewandowski Z. Dynamics of lead immobilization in sulfate reducing biofilms. Water Res. 2004;38:2726–2736. doi: 10.1016/j.watres.2004.03.023
  • Tavares MT, Martins C, Neto P. Biotreatment of Cr(VI) effluents. In: Sengupta AK, editor. Hazardous and industrial wastes. Lancaster: Tecnomics Publishing Co.; 1995. p. 223–232.
  • Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–633.
  • Pal A, Paul AK. Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol. 2008;48:49–64. doi: 10.1007/s12088-008-0006-5
  • Nehad EA, El-Shamy AR. Physiological studies on the production of exopolysaccharide by Fungi. Agr Biol J N Am. 2010;1:1303–1308.
  • Tewari N, Vasudevan P, Guha BK. Study on biosorption of Cr(VI) by Mucor hiemalis. Biochem Eng J. 2005;23: 185–192. doi: 10.1016/j.bej.2005.01.011
  • Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Adv. 2009;27:195–226. doi: 10.1016/j.biotechadv.2008.11.002
  • Vijayaraghavan K, Yun Y-S. Bacterial biosorbents and biosorption. Biotechnol Adv. 2008;26:266–291. doi: 10.1016/j.biotechadv.2008.02.002
  • Kang S-Y, Lee J-U, Kim K-W. Biosorption of Cr(III) and Cr(VI) onto the cell surface of Pseudomonas aeruginosa. Biochem Eng J. 2007;36:54–58. doi: 10.1016/j.bej.2006.06.005
  • Park D, Yun Y-S, Park JM. Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere. 2005;60:1356–1364. doi: 10.1016/j.chemosphere.2005.02.020
  • Quintelas C, Fernandes B, Castro J, Figueiredo H, Tavares T. Biosorption of Cr(VI) by a Bacillus coagulans biofilm supported on granular activated carbon (GAC). Chem Eng J. 2008;136:195–203. doi: 10.1016/j.cej.2007.03.082
  • Nancharaiah YV, Dodge C, Venugopalan VP, Narasimhan SV, Francis AJ. Immobilization of Cr(VI) and Its reduction to Cr(III)phosphate by granular biofilms comprising amixture of microbes. Appl Environ Microbiol. 2010;76: 2433–2438. doi: 10.1128/AEM.02792-09
  • Peighamy-Ashnaei S, Ahmadzadeh M, Behboudi K. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off, Commun. Agric Appl Biol Sci. 2007;72:951–956.
  • Yan D, Lu Y, Chen Y-F, Wu Q. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol. 2011;102:6487–6493.
  • Suwanapong S, Khongsay N, Laopaiboon L, Jaisil P, Laopaiboon P. Dried spent yeast and its hydrolysate as nitrogen supplements for single batch and repeated-batch ethanol fermentation from sweet sorghum juice. Energies. 2013;6:1618–1631.
  • Yánez-Mendizábal V, Viñas I, Usall J, Torres R, Solsona C, Teixidó N. Production of the postharvest biocontrol agent Bacillus subtilis CPA-8 using low cost commercial products and by-products. Biol Control. 2012;60:280–289. doi: 10.1016/j.biocontrol.2011.12.001
  • Yun Y-S, Park D, Park JM, Volesky B. Biosorption of trivalent chromium on the Brown Seaweed Biomass. Environ Sci Technol. 2001;35:4353–4358. doi: 10.1021/es010866k

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.