258
Views
0
CrossRef citations to date
0
Altmetric
Articles

On missing random effects in machine learning

ORCID Icon &
Pages 6320-6331 | Received 20 Sep 2019, Accepted 22 Jul 2020, Published online: 11 Aug 2020
 

Abstract

The large availability of undesigned data, a by-product of chemical industrial research and manufacturing, makes it attractive the venturesome use of machine learning for its plug-and-play appeal in attempt to extract value out of this data. Often this type of data does not only reflect the response to controlled variation but also to that caused by random effects. Thus, machine learning based models in this industry may easily miss active random effects out. This study shows by simulation the effect of missing a random effect via machine learning — vs. including it properly via mixed models as a benchmark — in a context commonly encountered in the chemical industry — mixture experiments with process variables — and as a function of relative cluster size, total variance, proportion of variance attributed to the random effect, and data size. Simulation was employed for it allows the comparison — missing vs. not missing random effects — to be made clear and in a simple manner while avoiding unwanted confounders found in real world data. Besides the long-established fact that machine learning performs better the larger the size of the data, it was also observed that data lacking due specificity — i.e. without clustering information — causes critical prediction biases regardless the data size.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,090.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.