311
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Does the performance of wet granulation and tablet hardness affect the drug dissolution profile of carvedilol in matrix tablets?

, &
Pages 1543-1550 | Received 07 Mar 2018, Accepted 29 May 2018, Published online: 14 Jun 2018
 

Abstract

Wet granulation is mostly used process for manufacturing matrix tablets. Compared to the direct compression method, it allows for a better flow and compressibility properties of compression mixtures. Granulation, including process parameters and tableting, can influence critical quality attributes (CQAs) of hydrophilic matrix tablets. One of the most important CQAs is the drug release profile. We studied the influence of granulation process parameters (type of nozzle and water quantity used as granulation liquid) and tablet hardness on the drug release profile. Matrix tablets contained HPMC K4M hydrophilic matrix former and carvedilol as a model drug. The influence of selected HPMC characteristics on the drug release profile was also evaluated using two additional HPMC batches. For statistical evaluation, partial least square (PLS) models were generated for each time point of the drug release profile using the same number of latent factors. In this way, it was possible to evaluate how the importance of factors influencing drug dissolution changes in dependence on time throughout the drug release profile. The results of statistical evaluation show that the granulation process parameters (granulation liquid quantity and type of nozzle) and tablet hardness significantly influence the release profile. On the other hand, the influence of HPMC characteristics is negligible in comparison to the other factors studied. Using a higher granulation liquid quantity and the standard nozzle type results in larger granules with a higher density and lower porosity, which leads to a slower drug release profile. Lower tablet hardness also slows down the release profile.

Acknowledgements

The authors acknowledge KRKA, d.d., Novo Mesto for its support in the experimental work.

Disclosure statement

The authors report no declarations of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.