153
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Preparation and characterization of hydroxyapatite nanoparticles doped with nickel, tin, and molybdate ions for their antimicrobial effects

& ORCID Icon
Pages 168-178 | Received 14 Jan 2022, Accepted 16 Mar 2023, Published online: 03 Apr 2023
 

Abstract

Background

Hydroxyapatite (HAp) nanoparticles doped with some ions have shown anticancer and antibacterial properties and are of great interest for the development of new biomedical applications. Therefore, the present study aimed to investigate the preparation and in vitro characterization of HAp nanoparticles doped with (Ni2+), tin (Sn2+), molybdate (Mo3+) ions for prevention of infections specially in bone tissue engineering.

Methods

HAp and HAp nanocrystal powders doped with nickel (Ni2+), tin (Sn2+), molybdate ions (Mo3+) with concentrations of 500, 1000, and 2000 ppm were prepared by the sol-gel method using a combination of calcium nitrate and phosphorous pentoxide as chemical reagents. The nanoparticles were characterized by FT-IR, XRD, EDAX and SEM. Their antimicrobial effect was studied by disk diffusion method on two types of bacteria: Pseudomonas aeruginosa and Staphylococcus aureus.

Results

FT-IR and XRD tests confirmed the formation of HAp nanoparticles. SEM images showed the morphology and nanostructure of HAp and Ni@HAp. Ni@HAp showed significantly more antimicrobial effects than the other two ions on S. aureus. EDAX confirmed the presence of Ni2+ ions in the Ni@HAp structure and the element map also showed very good dispersion of elements in both HAp and Ni@HAp structures.

Conclusions

HAp nanoparticles doped with nickel ions may be considered as a promising antibacterial treatment in bone tissue engineering and repairing of skeletal injuries contaminated with S. aureus.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by Pharmacy Student’s Research Committee of Isfahan University of Medical Sciences.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.