154
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Preparation and characterization of hydroxyapatite nanoparticles doped with nickel, tin, and molybdate ions for their antimicrobial effects

& ORCID Icon
Pages 168-178 | Received 14 Jan 2022, Accepted 16 Mar 2023, Published online: 03 Apr 2023

References

  • Khashan KS, Sulaiman GM, Ameer FAKA, et al. Synthesis, characterization and antibacterial activity of colloidal NiO nanoparticles. Pak J Pharm Sci. 2016;29(2):541–546.
  • Mardare CC, Hassel AW. Investigations on bactericidal properties of molybdenum-tungsten oxides combinatorial thin film material libraries. ACS Comb Sci. 2014;16(11):631–639.
  • Manoharan C, Pavithra G, Dhanapandian S, et al. Properties of spray pyrolised ZnO: Sn thin films and their antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2015;141:292–299.
  • Jia H, Hou W, Wei L, et al. The structures and antibacterial properties of nano-SiO2 supported silver/zinc-silver materials. Dent Mater. 2008;24(2):244–249.
  • Legeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108(11):4742–4753.
  • Stanić V, Janaćković D, Dimitrijević S, et al. Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Appl Surf Sci. 2011;257(9):4510–4518.
  • Stanić V, Dimitrijević S, Antić-Stanković J, et al. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci. 2010;256(20):6083–6089.
  • Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, et al. Hydroxyapatite as a biomaterial–a gift that keeps on giving. Drug Dev Ind Pharm. 2020;46(7):1035–1062.
  • Radovanović Ž, Jokić B, Veljović D, et al. Antimicrobial activity and biocompatibility of Ag+- and Cu2+-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+- and Cu2+-doped hydroxyapatite. Appl Surf Sci. 2014;307:513–519.
  • Morsi NM, Nabil Shamma R, Osama Eladawy N, et al. Bioactive injectable triple acting thermosensitive hydrogel enriched with nano-hydroxyapatite for bone regeneration: in-vitro characterization, saos-2 cell line cell viability and osteogenic markers evaluation. Drug Dev Ind Pharm. 2019;45(5):787–804.
  • Vallet-Regí M, González-Calbet JM. Calcium phosphates as substitution of bone tissues. Prog Solid State Chem. 2004;32(1–2):1–31.
  • Shanmugam S, Gopal B. Antimicrobial and cytotoxicity evaluation of aliovalent substituted hydroxyapatite. Appl Surf Sci. 2014;303:277–281.
  • Shanmugam S, Gopal B. Copper substituted hydroxyapatite and fluorapatite: synthesis, characterization and antimicrobial properties. Ceram Int. 2014;40(10):15655–15662.
  • Chung RJ, Hsieh MF, Huang CW, et al. Antimicrobial effects and human gingival biocompatibility of hydroxyapatite sol-gel coatings. J Biomed Mater Res B Appl Biomater. 2006;76(1):169–178.
  • Panda RN, Hsieh MF, Chung RJ, et al. FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J Phys Chem Solids. 2003;64(2):193–199.
  • Oh KS, Kim KJ, Jeong YK, et al. Effect of fabrication processes on the antimicrobial properties of silver doped nano-sized HAp. KEM. 2003;240-242:583–586.
  • Manjubala I, Sivakumar M, Sampath Kumar TS, et al. Synthesis and characterization of functional gradient materials using Indian corals. J Mater Sci Mater Med. 2000;11(11):705–709.
  • Chung RJ, Hsieh MF, Huang KC, et al. Anti-microbial hydroxyapatite particles synthesized by a sol-gel route. J Sol-Gel Sci Technol. 2005;33(2):229–239.
  • Mocanu A, Furtos G, Rapuntean S, et al. Synthesis; characterization and antimicrobial effects of composites based on multi-substituted hydroxyapatite and silver nanoparticles. Appl Surf Sci. 2014;298:225–235.
  • Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials. 2006;27(11):2331–2339.
  • Stoodley P, Ehrlich GD, Sedghizadeh PP, et al. Orthopaedic biofilm infections. Curr Orthop Pract. 2011;22(6):558–563.
  • Chen W, Liu Y, Courtney HS, et al. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials. 2006;27(32):5512–5517.
  • Harris LG, Richards RG. Staphylococci and implant surfaces: a review. Injury. 2006;37(2):S3–S14.
  • Chen W, Oh S, Ong AP, et al. Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process. J Biomed Mater Res A. 2007;82(4):899–906.
  • Montali A. Antibacterial coating systems. Injury. 2006;37(2):S81–S86.
  • Ge X, Leng Y, Bao C, et al. Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants. J Biomed Mater Res A. 2010;95(2):588–599.
  • Jeyachandran YL, Venkatachalam S, Karunagaran B, et al. Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films. Mater Sci Eng C. 2007;27(1):35–41.
  • Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect. 2005;60(1):1–7.
  • Thornes B, Murray P, Bouchier-Hayes D. Development of resistant strains of Staphylococcus epidermidis on gentamicin-loaded bone cement in vivo. J Bone Jt Surg Ser B. 2002;84-B(5):758–760.
  • Campoccia D, Montanaro L, Speziale P, et al. Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials. 2010;31(25):6363–6377.
  • Hamouda T, Baker JR. Antimicrobial mechanism of action of surfactant lipid preparations in enteric gram-negative bacilli. J Appl Microbiol. 2000;89(3):397–403.
  • Mo A, Liao J, Xu W, et al. Preparation and antibacterial effect of silver-hydroxyapatite/titania nanocomposite thin film on titanium. Appl Surf Sci. 2008;255(2):435–438.
  • Hu C, Guo J, Qu J, et al. Efficient destruction of bacteria with Ti(IV) and antibacterial ions in co-substituted hydroxyapatite films. Appl Catal B Environ. 2007;73(3-4):345–353.
  • Panáček A, Kvítek L, Prucek R, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110(33):16248–16253.
  • Vasanthi M, Ravichandran K, Jabena Begum N, et al. Influence of Sn doping level on antibacterial activity and certain physical properties of ZnO films deposited using a simplified spray pyrolysis technique. Superlattices Microstruct. 2013;55(1):180–190.
  • Sayilkan F, Asiltürk M, Kiraz N, et al. Photocatalytic antibacterial performance of Sn4+-doped TiO2 thin films on glass substrate. J Hazard Mater. 2009;162(2-3):1309–1316.
  • Meza D, Figueroa IA, Flores-Morales C, et al. Nano hydroxyapatite crystals obtained by colloidal solution. Rev Mex Fis. 2011;57(6):471–474.
  • Costescu A, Pasuk I, Ungureanu F, et al. Physico-chemical properties of nano-sized hexagonal hydroxyapatite powder synthesized by sol-gel. Dig J Nanomater Biostructures. 2010;5(4):989–1000.
  • Hsieh MF, Perng LH, Chin TS, et al. Phase purity of sol-gel-derived hydroxyapatite ceramic. Biomaterials. 2001;22(19):2601–2607.
  • Torrecillas R, Díaz M, Barba F, et al. Synthesis and antimicrobial activity of a silver-hydroxyapatite nanocomposite. J Nanomater. 2009;2009:1–7.
  • Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6(2):71–79.
  • Ciobanu CS, Iconaru SL, Chifiriuc MC, et al. Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles. Biomed Res Int. 2013;2013:1–10.
  • Saravanan S, Nethala S, Pattnaik S, et al. Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol. 2011;49(2):188–193.
  • Goyal AK, Khatri K, Mishra N, et al. Aquasomes - a nanoparticulate approach for the delivery of antigen. Drug Dev Ind Pharm. 2008;34(12):1297–1305.
  • Zhou G, Li Y, Xiao W, et al. Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex. J Biomed Mater Res A. 2008;85(4):929–937.
  • Hsieh MF, Perng LH, Chin TS. Formation mechanisms of sol-gel-derived hydroxyapatite using different thermal processing. J Sol-Gel Sci Technol. 2002;23(3):205–214.
  • Cacciotti I, Bianco A. High thermally stable Mg-substituted tricalcium phosphate via precipitation. Ceram Int [Internet]. 2011;37(1):127–137.
  • Venkateswarlu K, Chandra Bose A, Rameshbabu N. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson–Hall analysis. Phys B Condens Matter. 2010;405(20):4256–4261.
  • Mustapha S, Ndamitso MM, Abdulkareem AS, et al. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv Nat Sci Nanosci Nanotechnol. 2019;10(4):045013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.