401
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Bacterial communities in the rhizosphere of Phragmites australis from an oil-polluted wetland

, , , &
Pages 360-370 | Received 10 Jan 2017, Accepted 29 Jun 2017, Published online: 19 Jul 2017
 

ABSTRACT

Although Phragmites australis is commonly planted in constructed wetlands, very little is known about its roots-associated bacterial communities, especially in wetlands used for the remediation of oil produced waters. Here, we describe the bacterial diversity, using molecular (illumina MiSeq sequencing) and cultivation techniques, in the rhizosphere soils of P. australis from an oil-polluted wetland in Oman. The obtained isolates were tested for their plant-growth promoting properties. Most sequences belonged to Proteobacteria, Bacteriodetes and Firmicutes. Sequences of potential hydrocarbon-degrading bacteria (e.g. Ochrobactrum, and Pseudomonas) were frequently encountered. All soils contained sequences of known sulfur-oxidizing (e.g. Thiobacillus, Thiofaba, Rhodobacter and Sulfurovum) and sulfate-reducing bacteria, although the latter group made up only 0.1% to 3% of total sequences. The obtained isolates from the rhizosphere soils were phylogenetically affiliated to Serratia, Acinetobacter, Xenorhabdus, Escherichia and Salmonella. All strains were able to solubilize phosphate and about half were capable of producing organic acids and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Around 42% of the strains had the ability to produce indole acetic acid and siderophores. We conclude that the rhizosphere soils of P. australis in oil polluted wetlands harbor diverse bacterial communities that could enhance the wetland performance through hydrocarbon degradation, nutrient cycling and supporting plant growth.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.