528
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Extraction of Uranium(VI) and Plutonium(IV) with Tetra-Alkylcarbamides

, , , &
Pages 111-125 | Published online: 26 Jun 2019
 

ABSTRACT

The use of tetra-alkylcarbamides as novel extractants for the separation of uranium(VI) and plutonium(IV) by solvent extraction from spent nuclear fuels is investigated in this study. Batch extraction experiments show that tetra-alkylcarbamides strongly extract U(VI) with high distribution ratios. Plutonium(IV) can be co-extracted with U(VI) at high nitric acid concentration, while high U(VI)/Pu(IV) selectivities can be reached at lower acidity. Loading capacity experiments with high uranium concentrations show that alkyl chains longer than butyl are necessary to avoid third phase formation. Nevertheless, the viscosity of uranium-loaded solvents gets too high with alkyl chains longer than pentyl. Overall, this study shows that with TPU extractant (with four pentyl chains), an efficient co-extraction of uranium and plutonium can be reached (DU,Pu > 1) for a concentration of nitric acid higher than 4 mol•L−1, while the partition between uranium(VI) and plutonium(IV) could be operated even at 2 mol•L−1 nitric acid without redox chemistry.

Acknowledgments

The authors gratefully acknowledge ORANO and EDF for financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 876.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.