232
Views
6
CrossRef citations to date
0
Altmetric
Research Article

The significant impact colloidal nanothermite particles (Fe2O3/Al) on HMX kinetic decomposition

, , , &
Pages 27-42 | Published online: 01 Apr 2021
 

ABSTRACT

HMX is one of the most powerful energetic materials; however, HMX experience low sensitivity and high activation energy. Whereas ferric oxide particles can act as catalyst for HMX decomposition with change in its decomposition kinetics from C-N bond cleavage to hydrogen atom abstraction; ferric oxide can induce vigorous thermite reaction with aluminum particles. Consequently, thermite particles can catalyze HMX decomposition, and enhance its decomposition enthalpy. This study reports on the fabrication and of ferric oxide nanoparticles of 5 nm particle size. Ferric oxide NPs and aluminum nanoplates of 100 nm were effectively integrated into HMX via co-precipitation technique. Elemental mapping was performed using EDAX detector; uniform dispersion of nanothermite particles was confirmed. Nanothermite particles experienced enhanced HMX decomposition enthalpy by 53%, with decrease in decomposition temperature by 13°C. The impact of nanothermite particles on HMX kinetic decomposition was evaluated using two different analysis models including differential isoconversional method of model-free Friedman analysis, and integral isoconversional method of Ozawa. Thermite nanoparticles demonstrated drastic decrease in HMX activation energy by 24 and 30% using Friedman and Ozawa models, respectively. The developed colloidal nanothermite particles demonstrated superior catalytic effect with enhanced decomposition enthalpy.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 554.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.