232
Views
6
CrossRef citations to date
0
Altmetric
Research Article

The significant impact colloidal nanothermite particles (Fe2O3/Al) on HMX kinetic decomposition

, , , &

References

  • Brown, M. et al. 2000. Computational aspects of kinetic analysis: Part A: The ICTAC kinetics project-data, methods and results. Thermochimica Acta 355(1–2):125–43. doi:10.1016/S0040-6031(00)00443-3.
  • Brown, M. E., and P. K. Gallagher. 2011. Handbook of thermal analysis and calorimetry: Recent advances, techniques and applications. Amsterdam, The Netherlands: Elsevier.
  • Chakravarthy, S. R., E. W. Price, and R. K. Sigman. 1997. Mechanism of burning rate enhancement of composite solid propellants by ferric oxide. Journal of Propulsion and Power 13 (4):471–80. doi:10.2514/2.5208.
  • Chen, R. et al. 1981. Mixed first and second order kinetics in thermally stimulated processes. Journal of Luminescence 23(3–4):293–303. doi:10.1016/0022-2313(81)90135-6.
  • Conkling, J., and C. Mocella, ed. 2012. Chemistry of pyrotechnics basic principles and theory. Second ed. London: CRC.
  • Elbasuney, S. 2015. Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy. Powder Technology 277:63–73. doi:10.1016/j.powtec.2015.02.044.
  • Elbasuney, S. 2017. Sustainable steric stabilization of colloidal titania nanoparticles. Applied Surface Science 409:438–47. doi:10.1016/j.apsusc.2017.03.013.
  • Elbasuney, S., et al. 2019. The significant role of stabilized colloidal ZrO2 nanoparticles for corrosion protection of AA2024. Environmental Nanotechnology, Monitoring & Management 12:100242. doi:10.1016/j.enmm.2019.100242.
  • Elbasuney, S., et al. 2020a. Novel nanocomposite decoy flare based on super-thermite and graphite particles. Journal of Materials Science: Materials in Electronics: 31:6130–6139.
  • Elbasuney, S., et al. 2020b. Synthesis of CuO-distributed carbon nanofiber: Alternative hybrid for solid propellants. Journal of Materials Science: Materials in Electronics 31 (11):8212–19.
  • Elbasuney, S., et al. 2020c. Facile synthesis of RGO-Fe2O3 nanocomposite: A novel catalyzing agent for composite propellants. Journal of Materials Science: Materials in Electronics 31 (23):20805–15.
  • Elbasuney, S. et al. 2020d. Novel high energy density material based on metastable intermolecular nanocomposite. Journal of Inorganic and Organometallic Polymers and Materials 30(10):3980–88. doi:10.1007/s10904-020-01539-0.
  • Elbasuney, S., et al. 2021. Ferric oxide colloid: Novel nanocatalyst for heterocyclic nitramines. Journal of Materials Science: Materials in Electronics. 32:4185–4195.
  • Elbasuney, S., M. Gobara, and M. Yehia. 2019. Ferrite nanoparticles: Synthesis, characterization, and catalytic activity evaluation for solid rocket propulsion systems. Journal of Inorganic and Organometallic Polymers and Materials 29 (3):721–29. doi:10.1007/s10904-018-1046-x.
  • Elbasuney, S., and M. Yehia. 2019a. Thermal decomposition of ammonium perchlorate catalyzed with CuO nanoparticles. Defence Technology 15 (6):868–74. doi:10.1016/j.dt.2019.03.004.
  • Elbasuney, S., and M. Yehia. 2019b. Ammonium perchlorate encapsulated with TiO2 nanocomposite for catalyzed combustion reactions. Journal of Inorganic and Organometallic Polymers and Materials 29 (4):1349–57. doi:10.1007/s10904-019-01099-y.
  • Elbasuney, S., and M. Yehia. 2020. Ferric oxide colloid: A novel nano-catalyst for solid propellants. Journal of Inorganic and Organometallic Polymers and Materials 30 (3):706–13. doi:10.1007/s10904-019-01339-1.
  • Elghafour, A. M. A., et al. 2018. Highly energetic nitramines: A novel platonizing agent for double-base propellants with superior combustion characteristics. Fuel 227:478–84. doi:10.1016/j.fuel.2018.04.117.
  • Feagin, T. A., and P. J. Rae. 2020. Optical absorption in polycrystalline PETN, RDX, HMX, CL-20 and HNS and its possible effect on exploding bridgewire detonator function. Journal of Energetic Materials 38:1–11.
  • Flynn, J. H., and L. A. Wall. 1966. General treatment of the thermogravimetry of polymers. Journal of Research of the National Bureau of Standards. Section A. Physics and Chemistry 70 (6):487.
  • Friedman, H. L. 1964. Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. in Journal of polymer science part C: Polymer symposia. Unites States: Wiley Online Library.
  • Haag, W. O., B. C. Gates, and H. K. Zinger, ed. 2000. Advances in catalysis. Vol. 44. San Diego: ACADEMIC PRESS.
  • Kappagantula, K., and M. Pantoya. 2016. Fast-reacting nanocomposite energetic materials: Synthesis and combustion characterization, in energetic nanomaterials, 21–45.  Amsterdam: Elsevier.
  • Khawam, A., and D. R. Flanagan. 2006. Solid-state kinetic models: Basics and mathematical fundamentals. The Journal of Physical Chemistry B 110 (35):17315–28. doi:10.1021/jp062746a.
  • Klaewkla, R., M. Arend, and W. F. Hoelderich. 2011. A review of mass transfer controlling the reaction rate in heterogeneous catalytic systems, Vol. 5. Germany: INTECH Open Access Publisher Rijeka.
  • Lanoiselée, Y., N. Moutal, and D. S. Grebenkov. 2018. Diffusion-limited reactions in dynamic heterogeneous media. Nature Communications 9 (1):1–16. doi:10.1038/s41467-018-06610-6.
  • Meyer, R., J. Köhler, and A. Homburg. 2016. Explosives. Weinheim: John Wiley & Sons.
  • Naya, T., and M. Kohga. 2015. Thermal decomposition behaviors and burning characteristics of AN/nitramine-based composite propellant. Journal of Energetic Materials 33 (2):73–90. doi:10.1080/07370652.2014.902406.
  • Pivkina, A. et al. 2004. Nanomaterials for heterogeneous combustion. Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials 29(1):39–48. doi:10.1002/prep.200400025.
  • Pivkina, A. N., et al. 2016. Catalysis of HMX decomposition and combustion: Defect chemistry approach, in energetic nanomaterials. Amsterdam: Elsevier. 193–230.
  • Starink, M. 2003. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of isoconversion methods. Thermochimica Acta 404 (1–2):163–76. doi:10.1016/S0040-6031(03)00144-8.
  • Tang, Z., et al. 2011. On thermal decomposition kinetics and thermal safety of HMX. Hanneng Cailiao(Chinese Journal of Energetic Materials) 19 (4):396–400.
  • Vara, J. A., and P. N. Dave. 2019. Metal oxide nanoparticles as catalyst for thermal behavior of AN based composite solid propellant. Chemical Physics Letters 730:600–07. doi:10.1016/j.cplett.2019.06.048.
  • Vara, J. A., P. N. Dave, and S. Chaturvedi. 2019. The catalytic activity of transition metal oxide nanoparticles on thermal decomposition of ammonium perchlorate. Defence Technology 15 (4):629–35. doi:10.1016/j.dt.2019.04.002.
  • Vara, J. A., P. N. Dave, and S. Chaturvedi. 2020. Investigating catalytic properties of nanoferrites for both AP and nano-AP based composite solid propellant. Combustion Science and Technology 1–15. doi:10.1080/00102202.2020.1734582.
  • Vara, J. A., P. N. Dave, and S. Chaturvedi. 2021. The catalytic investigation of nanoferrites on the thermal decomposition behavior of AN-based composite solid propellant. Particulate Science and Technology 39 (1):1–9. doi:10.1080/02726351.2019.1639866.
  • Vara, J. A., P. N. Dave, and V. R. Ram. 2019. Nanomaterials as modifier for composite solid propellants. Nano-Structures & Nano-Objects 20:100372. doi:10.1016/j.nanoso.2019.100372.
  • Vyazovkin, S. et al. 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica acta 520(1–2):1–19. doi:10.1016/j.tca.2011.03.034.
  • Wang, K. et al. 2019. Research on the thermal decomposition kinetics and the isothermal stability of HMX. Journal of Thermal Analysis and Calorimetry 135(4):2513–18. doi:10.1007/s10973-018-7275-y.
  • Wei, Z.-X. et al. 2009. Preparation and catalytic activities of LaFeO3 and Fe2O3 for HMX thermal decomposition. Journal of Hazardous Materials 165(1–3):1056–61. doi:10.1016/j.jhazmat.2008.10.086.
  • Wyandt, C. M., and D. R. Flanagan. 1992. Solid-state non-isothermal kinetics of sulfonamide-ammonia adduct desolvation. Thermochimica acta 196 (2):379–89. doi:10.1016/0040-6031(92)80101-2.
  • Yan, Q.-L., et al. 2016. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Progress in Energy and Combustion Science 57:75–136.
  • Zarko, V. E., and A. A. Gromov, ed. 2016. Energetic nanomaterials synthesis, characterization, and application. Amsterdam: Elsevier.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.