Publication Cover
Drying Technology
An International Journal
Volume 36, 2018 - Issue 8
2,355
Views
156
CrossRef citations to date
0
Altmetric
ARTICLES

Red pepper (Capsicum annuum L.) drying: Effects of different drying methods on drying kinetics, physicochemical properties, antioxidant capacity, and microstructure

, , , , , , , & show all
Pages 893-907 | Received 30 Apr 2017, Accepted 26 Jul 2017, Published online: 20 Oct 2017
 

ABSTRACT

Results of an experimental study are presented and discussed for pulsed vacuum drying (PVD), infrared-assisted hot air-drying (IR-HAD), and hot air-drying (HAD) on drying kinetics, physicochemical properties (surface color, nonenzyme browning index, red pigments, rehydration ratio, water holding capacity, and ascorbic acid), antioxidant capacity (ferric reducing antioxidant power and 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity), and microstructure of red pepper. As expected, the drying time decreased with an increase in drying air temperature, IR-HAD needed the shortest drying time, followed by HAD and PVD. The effective moisture diffusivity (Deff) of red pepper under PVD, HAD, and IR-HAD was computed to be in the range 1.33–5.83 × 10−10, 1.38–6.87 × 10−10, and 1.75–8.97 × 10−10 m2/s, respectively. PVD provided superior physicochemical properties of dried red pepper compared to samples dried by HAD and IR-HAD. In detail, PVD yielded higher rehydration ratio, water holding capacity, red pigment and ascorbic acid content, brighter color, lower nonenzyme browning index, and comparable antioxidant capacity compared to samples dried by HAD and IR-HAD at the same drying temperature. Furthermore, PVD promoted the formation of a more porous structure, while HAD and IR-HAD yielded less porous structure. The current findings indicate that PVD drying has the potential to produce high-quality dried red pepper on commercial scale.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (No. 31360399), the National Key Research and Development Program of China (No. 2017YFD0400905), and the Project in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (2015BAD19B010201).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 760.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.