759
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures

, &
Pages 1137-1156 | Received 09 Jun 2017, Accepted 24 Jan 2018, Published online: 25 Feb 2018
 

Abstract

In the last 15 years, the exploitation of biological systems (i.e. plants, bacteria, mycelial fungi, yeasts, and algae) to produce metal(loid) (Me)-based nanomaterials has been evaluated as eco-friendly and a cost-effective alternative to the chemical synthesis processes. Although the biological mechanisms of biogenic Me-nanomaterial (Bio-Me-nanomaterials) production are not yet completely elucidated, a key advantage of such bio-nanostructures over those chemically synthesized is related to their natural thermodynamic stability, with several studies ascribed to the presence of an organic layer surrounding these Bio-Me-nanostructures. Different macromolecules (e.g. proteins, peptides, lipids, DNA, and polysaccharides) or secondary metabolites (e.g. flavonoids, terpenoids, glycosides, organic acids, and alkaloids) naturally produced by organisms have been indicated as main contributors to the stabilization of Bio-Me-nanostructures. Nevertheless, the chemical–physical mechanisms behind the ability of these molecules in providing stability to Bio-Me-nanomaterials are unknown. In this context, transposing the stabilization theory of chemically synthesized Me-nanomaterials (Ch-Me-nanomaterials) to biogenic materials can be used towards a better comprehension of macromolecules and secondary metabolites role as stabilizing agents of Bio-Me-nanomaterials. According to this theory, nanomaterials are generally featured by high thermodynamic instability in suspension, due to their high surface area and surface energy. This feature leads to the necessity to stabilize chemical nanostructures, even during or directly after their synthesis, through the development of (i) electrostatic, (ii) steric, or (iii) electrosteric interactions occurring between molecules and nanomaterials in suspension. Based on these three mechanisms, this review is focused on parallels between the stabilization of biogenic or chemical nanomaterials, suggesting which chemical–physical mechanisms may be involved in the natural stability of Bio-Me-nanomaterials. As a result, macromolecules such as DNA, polyphosphates and proteins may electrostatically interact with Bio-Me-nanomaterials in suspension through their charged moieties, showing the same properties of counterions in Ch-Me-nanostructure suspensions. Since several biomolecules (e.g. neutral lipids, nonionic biosurfactants, polysaccharides, and secondary metabolites) produced by metal(loid)-grown organisms can develop similar steric hindrance as compared to nonionic amphiphilic surfactants and block co-polymers generally used to sterically stabilize Ch-Me-nanomaterials. These biomolecules, most likely, are involved in the development of steric stabilization, because of their bulky structures. Finally, charged lipids and polysaccharides, ionic biosurfactants or proteins with amphiphilic properties can exert a dual effect (i.e. electrostatic and steric repulsion interactions) in the contest of Bio-Me-nanomaterials, leading to the high degree of stability observed.

Disclosure statement

The authors report no declarations of interest.

Additional information

Funding

This study was funded by Natural Sciences and Engineering Research Council of Canada, [216887-2010].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 751.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.