760
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures

, &
Pages 1137-1156 | Received 09 Jun 2017, Accepted 24 Jan 2018, Published online: 25 Feb 2018

References

  • Horikoshi S, Serpone N. Microwaves in nanoparticle synthesis. Weinheim: Wiley-VHC Verlag GmbH& Co; 2013. Chapter 1, Introduction to nanoparticles. p. 1–23.
  • Roco MC. Nanoparticles and nanotechnology research. J Nanopart Res. 1999;1:1–6.
  • Cao G. Nanostructures and Nanomaterials: synthesis, properties and applications. London: Imperial College; 2004. Chapter 1, Introduction; p. 1–14.
  • Singh P, Kim YJ, Zhang D, et al. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34:588–599.
  • Ankamwar B, Chaudhary M, Sastry M. Gold nanoparticles biologically synthesized using Tamarind leaf extract and potential application in vapour sensing. Synth React Inorg Metal-Org Nano-Metal Chem. 2005;35:19–26.
  • Suresh K, Prabagaran SR, Sengupta S, et al. Bacillus indicus sp. nov., an arsenic-resistant bacterium isolated from an aquifer in West Bengal, India. J Syst Evol Microbiol. 2004;54:1369–1375.
  • Bhainsa KC, D’Souza SF. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces. 2006;47:160–164.
  • Song JY, Kim BS. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng. 2009;32:79–84.
  • Pantidos N, Horsfall LE. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol. 2014;5:5.
  • Li X, Xu H, Chen ZS, et al. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. 2011;2011:270974.
  • Yong P, Rowson AN, Farr JPG, et al. Bioaccumulation of palladium by Desulfovibrio desulfuricans. J Chem Technol Biotechnol. 2002;55:593–601.
  • Deplanche K, Caldelari I, Mikheenko IP, et al. Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiology. 2010;156:2630–2640.
  • Shi L, Dong H, Reguera G, et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol. 2016;14:651–662.
  • Ng CK, Sivakumar K, Liu X, et al. Influence of outer membrane c-type cytochromes on particle size and activity of extracellular nanoparticles produced by Shewanella oneidensis. Biotechnol Bioeng. 2013;110:1831.
  • Ingale AG, Chaudhari AN. Biogenic synthesis of nanoparticles and potential applications: an ecofriendly approach. J Nanomed Nanotechnol. 2013;4:165.
  • Dobias J, Suvorova EI, Bernier-Latmani R. Role of proteins in controlling selenium nanoparticles size. Nanotechnology. 2011;22:195605.
  • Goldstein AN, Echer CM, Alivisatos AP. Melting in semiconductor nanocrystals. Science. 1992;256:1425.
  • Cao G. Nanostructures and nanomaterials: synthesis, properties and applications. London: Imperial College; 2004. Chapter 2, Physical chemistry of solid surfaces; p. 15–48.
  • Pereira L, Mehboob F, Stams AJM, et al. Metallic nanoparticles: microbial synthesis and unique properties for biotechnological applications, bioavailability and biotransformation. Crit Rev Biotechnol. 2015;35:114–128.
  • Narayanan KB, Sakthivel N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci. 2011;169:59–79.
  • Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013;31:346–356.
  • Gardea-Torresdey JL, Parsons JG, Gomez E, et al. Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett. 2002;2:397–401.
  • Noruzi M. Biosynthesis of gold nanoparticles using plant extracts. Bioprocess Biosyst Eng. 2005;38:1–14.
  • Singh P, Kim YJ, Yang DC. A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif Cells Nanomed Biotechnol. 2016;44:1949–1957.
  • Shankar SS, Rai A, Ahmad A, et al. Biosynthesis of silver and gold nanoparticles from extracts of different parts of the Geranium plant. Appl Nanotechnol. 2004;1:69–77.
  • Husen A, Siddiqi KS. Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechnol. 2014;16:28.
  • Duan H, Wang D, Li Y. Green chemistry for nanoparticle synthesis. Chem Soc Rev. 2015;44:5778–5792.
  • Mallikarjuna K, Narasimh G, Dilli GR, et al. Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Dig J Nanomat Biostruct. 2011;6:181–186.
  • Armendariz V, Herrera I, Peralta-Videa JR, et al. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res. 2004;6:377–382.
  • Shankar SS, Rai A, Ahmad A, et al. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;275:496–502.
  • Philip D, Unni C, Aswathy Aromal S, et al. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta A. 2011;78:899–904.
  • Shankar SS, Rai A, Ankamwar B, et al. Biological synthesis of triangular gold nanoprisms. Nat Mater. 2004;3:482–488.
  • El-Kassas HY, El-Sheekh MM. Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pac J Cancer Prev. 2014;15:4311–4317.
  • Li SK, Shen YH, Xie AJ, et al. Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L. extract. Nanotechnology. 2007;18:405101–405109.
  • Prasad KS, Patel H, Patel T, et al. Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids Surf B Biointerfaces. 2013;103:261–266.
  • Prasad KS, Selvaraj K. Biogenic synthesis of selenium nanoparticles and their effect on As(III)-induced toxicity on human lymphocytes. Biol Trace Elem Res. 2014;157:275–283.
  • Krumov N, Perner-Nochta I, Oder S, et al. Production of inorganic nanoparticles by microorganisms. Chem Eng Technol. 2009;32:1026–1035.
  • Zhang X, Yan S, Tyagi RD, et al. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere. 2011;82:489–494.
  • Parikh RY, Singh S, Prasad BLV, et al. Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. ChemBioChem. 2008;9:1415–1422.
  • Ganesh Babu MM, Gunasekaran P. Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Coll Surf B Biointerfaces. 2009;74:191–195.
  • Das VL, Thomas R, Varghese RT, et al. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech. 2014;4:121.
  • Singh P, Kim YJ, Singh H, et al. Biosynthesis of anisotropic silver nanoparticles by Bhargavaea indica and their synergistic effect with antibiotics against pathogenic microorganisms. J Nanomater. 2015;2015:234741.
  • Ahmad A, Senapati S, Khan MI, et al. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir. 2003;19:3550–3553.
  • Ahmad A, Senapati S, Khan MI, et al. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology. 2003;14:7.
  • He S, Zhang Y, Guo Z, et al. Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog. 2008;24:476–480.
  • Suresh AK, Pelletier DA, Wang W, et al. Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater. 2011;7:2148–2152.
  • Kessi J, Hanselmann KW. Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J Biol Chem. 2004;279:50662–50669.
  • Yee N, Ma J, Dalia A, et al. Se(VI) reduction and the precipitation of Se(0) by the facultative bacterium Enterobacter cloacae SLD1a-1 are regulated by FNR. Appl Environ Microbiol. 2007;73:1914–1920.
  • Lenz M, Kolvenbach B, Gygax B, et al. Shedding light on selenium biomineralization: proteins associated with bionanominerals. Appl Environ Microbiol. 2011;77:4676–4680.
  • Debieux CM, Dridge EJ, Mueller CM, et al. A bacterial process for selenium nanosphere assembly. Proc Natl Acad Sci USA. 2011;108:13480–13485.
  • Cremonini E, Zonaro E, Donini M, et al. Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. Microb Biotechnol. 2016;9:758–771.
  • Bao H, Lu Z, Cui X, et al. Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater. 2010;6:3534–3541.
  • Bai HJ, Zhang ZM, Guo Y, et al. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Coll Surf B Biointerfaces. 2009;70:142–146.
  • Kumar U, Shete A, Harle AS. Extracellular bacterial synthesis of protein-functionalized ferromagnetic Co3O4 nanocrystals and imaging of self-organization of bacterial cells under stress after exposure to metal ions. Chem Mater. 2008;20:1484–1491.
  • Perez-Gonzalez T, Jimenez-Lopez C, Neal AL, et al. Magnetite biomineralization induced by Shewanella oneidensis. Geochim Cosmochim Acta. 2010;74:967–979.
  • Presentato A, Piacenza E, Anikovskiy M, et al. Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions. Microb Cell Fact. 2016;15:204.
  • Sweeney RY, Mao C, Gao X, et al. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol. 2004;11:1553–1559.
  • Kumar CG, Mamidyala SK. Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Coll Surf B Biointerfaces. 2011;84:462–466.
  • Jain R, Jordan N, Weiss S, et al. Extracellular polymeric substances govern the surface charge of biogenic elemental selenium nanoparticles. Environ Sci Technol. 2015;49:1713–1720.
  • Banat IM, Franzetti A, Gandolfi I, et al. Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol. 2010;87:427–444.
  • Reddy AS, Chen CY, Chen CC, et al. Synthesis of gold nanoparticles via an environmentally benign route using a biosurfactant. J Nanosci Nanotechnol. 2009;9:6693–6699.
  • Singh BR, Dwivedi S, Al-Khedhairy AA, et al. Synthesis of stable cadmium sulfide nanoparticles using surfactin produced by Bacillus amyloliquifaciens strain KSU-109. Coll Surf B Biointerfaces. 2011;85:207–213.
  • Mukherjee P, Ahmad A, Mandal D, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix – a novel biological approach to nanoparticle synthesis. Nano Lett. 2001;1:515–519.
  • Dhillon GS, Brar SK, Kaur S, et al. Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol. 2012;32:49–73.
  • Alghuthaymi MA, Almoammar H, Rai M, et al. Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip. 2015;29:221–236.
  • Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes- a review. Colloids Surf B Biointerfaces. 2014;121:474–483.
  • Kumar SA, Abyaneh MK, Gosavi SW, et al. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett. 2007;29:439–445.
  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Coll Surf B Biointerfaces. 2011;83:42–48.
  • Duran N, Marcato PD, Alves OL, et al. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol. 2005;3:8.
  • Wadhwani SA, Shedbalkar UU, Singh R, et al. Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol. 2016;100:2555–2566.
  • Rajput S, Werezuk R, Lange RM, et al. Fungal isolate optimized for biogenesis of silver nanoparticles with enhanced colloidal stability. Langmuir. 2016;32:8688–8697.
  • Ahmad A, Mukherjee P, Senapati S, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Coll Surf B Biointerfaces. 2003;28:313–318.
  • Mukherjee P, Senapati S, Mandal D, et al. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Biochem. 2002;3:461–463.
  • Bansal V, Sanyal A, Rautaray D, et al. Bioleaching of sand by the fungus Fusarium oxysporum as a means of producing extracellular silica nanoparticles. Adv Mater. 2005;17:889–892.
  • Basavaraja S, Balaji SD, Lagashetty A, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull. 2008;43:1164–1170.
  • Ingle A, Rai M, Gade A, et al. Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res. 2009;11:2079.
  • Gade AK, Bonde P, Ingle AP, et al. Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy. 2008;2:243–247.
  • Jain N, Bhargava A, Majumdar S, et al. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale. 2011;3:635–641.
  • Shaligram NS, Bule M, Bhambure R, et al. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem. 2007;44:939–943.
  • Vigneshwaran N, Kathe AA, Varadarajan PV, et al. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Coll Surf B Biointerfaces. 2006;53:55–59.
  • Vahabi K, Mansoori GA, Karimi S. Biosynthesis of silver nanoparticles by Fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences J. 2011;1:65–79.
  • Sarkar J, Dey P, Saha S, et al. Mycosynthesis of selenium nanoparticles. Micro Nano Lett. 2011;6:599–602.
  • Zhang X, He X, Wang K, et al. Biosynthesis of size-controlled gold nanoparticles using fungus, Penicillium sp. J Nanosci Nanotechnol. 2009;9:5738–5744.
  • Balaji D, Basavaraja S, Deshpande R, et al. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Coll Surf B Biointerfaces. 2009;68:88–92.
  • Kumar D, Karthik L, Kumar G, et al. Biosynthesis of silver nanoparticles from marine yeast and their antimicrobial activity against multidrug resistant pathogens. Pharmacol Online. 2011;3:1100–1111.
  • Blackwell KJ, Singleton I, Tobin JM. Metal cation uptake by yeast: a review. Appl Microbiol Biotechnol. 1995;43:579–584.
  • Dameron CT, Reese RN, Mehra RK, et al. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature. 1989;338:596–597.
  • Gericke M, Pinches A. Microbial production of gold nanoparticles. Gold Bull. 2006;39:1.
  • Pimprikar PS, Joshi SS, Kumar AR, et al. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Coll Surf B Biointerfaces. 2009;74:309–316.
  • Seshadri S, Saranya K, Kowshik M. Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Progress. 2011;27:1464–1469.
  • Davis SA, Patel HM, Mayes EL, et al. Brittle bacteria: a biomimetic approach to the formation of fibrous composite materials. Chem Mater. 1998;10:2516–2524.
  • Sahayaraj K, Rajesh S, Rathi JM. Silver nanoparticles biosynthesis using marine alga Padina pavonica (Linn.) and its microbicidal activity. Dig J Nanomater Biostruct. 2012;7:1557–1567.
  • LewisOscar F, Vismaya S, Arunkumar M, et al. Chapter 7: Algal nanoparticles: synthesis and biotechnological potentials. In: Dhanasekaran D, editor. Algae – organisms for imminent biotechnology. Croatia: InTech; 2016. p. 157–182.
  • Dahoumane SA, Djediat C, Yepremian C, et al. Species selection for the design of gold nanobioreactor by photosynthetic organisms. J Nanopart Res. 2012;14:883.
  • Ferutet-Mazel A, Mornet S, Charron L, et al. Biosynthesis of gold nanoparticles by the living freshwater diatom Eolimna minima, a species developed in river biofilms. Environ Sci Pollut Res. 2016;23:4334–4339.
  • Barwal I, Ranjan P, Kateriya S, et al. Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnol. 2011;9:56.
  • Jena J, Pradhan N, Nayak RR, et al. Microalga Scenedesmus sp.: a potential low-cost green machine for silver nanoparticle synthesis. J Microbiol Biotechnol. 2014;24:522–533.
  • Schrofel A, Kratosova G, Bohunick M, et al. Biosynthesis of gold nanoparticles using diatoms – silica-gold and EPS-gold bionanocomposite formation. J Nanopart Res. 2011;13:3207–3216.
  • Singaravelu G, Arockiamary JS, Kumar VG, et al. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Coll Surf B Biointerfaces. 2007;57:97–101.
  • Kannan RRR, Stirk WA, Van Staden J. Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae). S Afr J Bot. 2013;86:1–4.
  • Kathiraven T, Sundaramanickam A, Shanmugam N, et al. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci. 2015;5:499–504.
  • Azizi S, Ahmad MB, Namvar F, et al. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett. 2014;116:275–277.
  • Momeni S, Nabipour I. A simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl Biochem Biotechnol. 2015;176:1937–1949.
  • Mahdavi M, Namvar F, Ahmad MB, et al. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules. 2013;18:5954–5964.
  • Rajesh S, Raja DP, Rathi JM, et al. Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. Malvacearum. J Biopest. 2012;5:119–128.
  • Mata YN, Torres E, Blazquez ML, et al. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater. 2009;166:612–618.
  • Abboud Y, Saffaj T, Chagraoui A, et al. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci. 2014;4:571–576.
  • Dahoumane S, Yepremian C, Djediat C, et al. Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga. J Nanopart Res. 2016;18:79.
  • Derjaguin BV, Landau LD. Theory of the stability of strong charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. 1941;14:633.
  • Verwey EJ, Overbeek JT. Theory of the stability of lyophobic colloids. New York: Elsevier Publish Company Inc.; 1948.
  • Hiemenz P, Rajagopalan R. Principles of colloidal and surface chemistry. 3rd ed. New York: Marcel Dekker; 1997. Chapter 1, Colloid and surface chemistry. Scope and variables; p. 1–59.
  • Sato T, Ruch R. Stabilization of colloidal dispersion by polymer adsorption. New York: Marcel Dekker; 1980.
  • Hotze EM, Phenrat T, Lowry GV. Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual. 2010;39:1909–1924.
  • Hahn M, Abadzic D, O’Melia C. Aquasols: On the role of secondary minima. Environ Sci Technol. 2004;38:5915–5924.
  • Israelachvili J, editor. Intermolecular and Surfaces Forces. 2nd ed. Oxford: Academic Press; 1994. Chapter 14, Electrostatic forces between surfaces in liquids; p. 291–340.
  • Hoek EMV, Agarwal GK. Extended DLVO interactions between spherical particles and rough surfaces. J Colloid Interface Sci. 2006;298:50–58.
  • Phenrat T, Saleh N, Sirk K, et al. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol. 2007;41:284–290.
  • Chen K, Elimelech M. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J Colloid Interface Sci. 2007;309:126–134.
  • Ortega-Vinuesa J, Martín-Rodríguez A, Hidalgo-Alvarez R. Colloidal stability of polymer colloids with different interfacial properties: mechanisms. J Colloid Interface Sci. 1996;184:259–267.
  • Romero-Cano M, Martin-Rodriguez A, de las Nieves F. Electrosteric stabilization of polymer colloids with different functionality. Langmuir. 2001;17:3505–3511.
  • Pachon LD, Rothenberg G. Transition-metal nanoparticles: synthesis, stability and the leaching issue. Appl Organometal Chem. 2008;22:288–299.
  • Segets D, Marczak R, Schaufer S, et al. Experimental and theoretical studies of the colloidal stability of nanoparticles: a general interpretation based on stability maps. ACS Nano. 2011;5:4658–4669.
  • Tadros T. Colloids and interface science series, vol. 1. Weinheim: Wiley-VCH Verlag GmbH & Co; 2007. Chapter 1, General principles of colloidal stability and the role of surface forces; p. 1–41.
  • Stern O. The theory of the electrolytic double shift. Z Elektrochem. 1924;30:508–516.
  • Hiemenz P, Rajagopalan R. Principles of colloidal and surface chemistry. 3rd ed. New York: Marcel Dekker; 1997. Chapter 11, The electrical double layer and double layer interactions; p. 499–531.
  • Kar G, Chander S, Mika TS. The potential energy of interaction between dissimilar electrical double layers. J Colloid Interface Sci. 1973;44:347–355.
  • Hogg RI, Healey TW, Fuerstenau DW. Mutual coagulation of colloidal dispersions. Trans Faraday Soc. 1966;62:1638–1651.
  • Hiemenz P, Rajagopalan R. Principles of colloidal and surface chemistry. 3rd ed. New York: Marcel Dekker; 1997. Chapter 12, Electrophoresis and other electrokinetic phenomena; p. 534–571.
  • Hunter RJ. Zeta potential in colloid science: principles and applications. Oxford: Academic Press; 1981.
  • Verwey EJW, De Boer JH. Surface oxide films. Rec Trav Chim Des Pays-Bas. 1936;55:675–687.
  • Gao P, Weaver MJ. Metal adsorbate vibrational frequencies as a probe of surface bonding-halides and pseudohalides at gold electrodes. J Phys Chem. 1986;90:4057–4063.
  • Magnussen OM, Ocko BM, Adzic RR, et al. X-ray-diffraction studies of ordered chloride and bromide monolayers at the Au(111)-solution interface. Phys Rev B. 1995;51:5510–5513.
  • Rehbock C, Merk V, Gamrad L, et al. Size control of laser-fabricated surfactant-free gold nanoparticles with highly diluted electrolytes and their subsequent bioconjugation. Phys Chem Chem Phys. 2013;15:3057–3067.
  • Sylvestre JP, Poulin S, Kabashin AV, et al. Surface chemistry of nanoparticles produced by laser ablation in aqueous media. J Phys Chem B. 2004;108:16864–16869.
  • Siskova K, Vlckova B, Turpin PY, et al. Ion-specific effects on laser ablation of silver in aqueous electrolyte solutions. J Phys Chem C. 2008;112:4435–4443.
  • Shammas NK. Chapter 4: Coagulation and flocculation. In: Wang LK, Hung YT, Shammas NK, eds. Handbook of environmental engineering Volume 3: physicochemical treatment processes. Totowa: Humana Press. 2005; p. 103–138.
  • Zonaro E, Lampis S, Turner RJ, et al. Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front Microbiol. 2015;6:584.
  • Lampis S, Zonaro E, Bertolini C, et al. Selenite biotransformation and detoxification by Stenotrophomonas maltophilia SeITE02: Novel clues on the route to bacterial biogenesis of selenium nanoparticles. J Hazard Mater. 2016;324:3–14.
  • Piacenza E, Presentato A, Zonaro E, et al. Antimicrobial activity of biogenically produced spherical Se-nanomaterials embedded in organic material against Pseudomonas aeruginosa and Staphylococcus aureus strains on hydroxyapatite-coated surfaces. Microb Biotechnol. 2017;10:804–818.
  • Hiemenz P, Rajagopalan R. Principles of colloidal and surface chemistry. 3rd ed. New York: Marcel Dekker; 1997. Chapter 13, Electrostatic and polymer-induced colloidal stability; p. 575–621.
  • Manojkumar K, Sivaramakrishna A, Vijayakrishna K. A short review on stable metal nanoparticles using ionic liquids, supported ionic liquids, and poly(ionic liquids). J Nanopart Res. 2016;18:103.
  • Kraynov A, Mu¨ller TE. Chapter 12, Concepts for the stabilization of metal nanoparticles in ionic liquids. In: Handy S, ed. Applications of ionic liquids in science and technology. Croatia: InTech. 2011.
  • Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011;63:456–469.
  • Kim CJ. Advanced pharmaceutics: physicochemical principles. Boca Raton: CRC Press; 2004. Surface chemistry and colloids; p. 193–256.
  • Nutan MTH, Reddy IK. General principles of suspensions. In: Kulshreshtha AK, Singh ON, Wall GM, eds. Pharmaceutical suspensions: from formulation development to Manufacturing. New York: Springer; 2009. p. 39–66.
  • Choi JY, Yoo JY, Kwak HS, et al. Role of polymeric stabilizers for drug nanocrystal dispersions. Curr Appl Phys. 2005;5:472–474.
  • Tadros T. Chapter 3: Polymeric surfactants: stabilization of emulsions and dispersions. In: Goddard ED, Gruber JV, eds. Principles of polymer science and technology in cosmetics and personal care. New York: Marcel Dekker; 1999. p. 73–112.
  • Fleer G, Stuart MC, Leermarkers F. Chapter 1: Effect of polymers on the interaction between colloidal particles. In: Lyklema J, ed. Fundamental of interface and colloid science: soft colloids. London: Elsevier Academic Press; 2005.
  • Eastoe J, Tabor RF. Chapter 6: Surfactants and Nanoscience. In: Berti D, Palazzo G, eds. Colloidal foundation of nanoscience. London: Elsevier B.V. 2014; p. 135–157.
  • Evans DF, Wennerström H. The colloidal domain: where physics, chemistry, biology and technology meet. New York: Wiley-VCH; 1994. Chapter 8: Colloidal stability.
  • Rosen MJ. Surfactants and interfacial phenomena 3rd ed. Hoboken: Wiley-Interscience; 2004. Chapter 1, Characteristic features of surfactants; p. 1–33.
  • Fleer GJ, Stuart MC, Scheutjens JMHM. Polymers at interfaces. London: Chapman & Hall; 1993. Chapter 1, Polymers in solution; p. 1–25.
  • Yu W, Xie H. A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater. 2012;2012:435873.
  • Sharma G, Sharma AR, Bhavesh R, et al. Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules. 2014;19:2761–2770.
  • Einarson MB, Berg JC. Electrosteric stabilization of colloidal latex dispersions. J Colloid Interface Sci. 1993;155:165–172.
  • Cesarano J, Aksay IA, Bleier A. Stability of aqueous Al2O3 suspensions with poly(methacrylic acid) polyelectrolyte. J Am Ceram Soc. 1988;71:250–255.
  • Biggs S, Healy TW. Electrosteric stabilization of colloidal zirconia with low molecular weight polyacrylic acid. Faraday Trans. 1994;90:3415–3421.
  • Ruhe J, Ballauff M, Biesalski M, et al. Polyelectrolyte brushes. In: Schmidt M, editor. Polyelectrolytes with defined molecular architecture II. New York: Springer VB; 2004. p. 79–150.
  • Rojas DJ, Claesson PM, Muller D, et al. The effect of salt concentration on adsorption of low-charge-density polyelectrolytes and interactions between polyelectrolyte-coated surfaces. J Colloid Interface Sci. 1988;205:77–78.
  • Koetz J, Kosmella S. Polyelectrolytes and nanoparticles. London: Springer Laboratory; 2007. Chapter 3, Nanoparticles and polyelectrolytes. p. 47–69.
  • Morsy SMI. Role of surfactants in nanotechnology and their applications. Int J Curr Microbiol App Sci. 2014;3:237–260.
  • Mehta SK, Kumar S, Chaudhary S, et al. Effect of cationic surfactant head groups on synthesis, growth and agglomeration behavior of ZnS nanoparticles. Nanoscale Res Lett. 2009;4:1197–1208.
  • Janiak C. Ionic liquids for the synthesis and stabilization of metal nanoparticles. Z Naturforsch. 2013;68:1059–1089.
  • Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev. 1999;99:2071–2084.
  • Ueno K, Tokuda H, Watanabe M. Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. Phys Chem Chem Phys. 2010;12:1649–1658.
  • Dupont J, Scholtena JD. On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem Soc Rev. 2010;39:1780–1804.
  • Vollmer C, Janiak C. Naked metal nanoparticles from metal carbonyls in ionic liquids: easy synthesis and stabilization. Coord Chem Rev. 2011;255:2039–2057.
  • Hallett JP, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis 2. Chem Rev. 2011;5:3508–3576.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.