19
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Sequence-Independent Recombination Triple Helices: A Molecular Dynamics Study

&
Pages 333-345 | Received 27 Jun 1997, Published online: 21 May 2012
 

Abstract

Recent experimental studies have shown that the Rec-A mediated homologous recombination reaction involves a triple helical intermediate, in which the third strand base forms hydrogen bonds with both the bases in the major groove of the Watson-Crick duplex. Such ‘mixed’ hydrogen bonds allow formation of sequence independent triplexes. DNA triple helices involving ‘mixed’ hydrogen bonds have been studied, using model building, molecular mechanics (MM) and molecular dynamics (MD). Models were built for a triplex comprising all four possible triplets viz., G.C*C, C.G*C, A.T*T and T.A*A. To check the stability of all the ‘mixed’ hydrogen bonds in such triplexes and the conformational preferences of such triplex structures, MD studies were carried out starting from two structures with 30° and 36° twist between the basepairs. It was observed that though the two triplexes converged towards a similar structure, the various hydrogen bonds between the WC duplex and the third strand showed differential stabilities. An MD simulation with restrained hydrogen bonds showed that the resulting structure was stable and remained close to the starting structure. These studies help us in defining stable hydrogen bond geometries involving the third strand and the WC duplex. It was observed that in the C.G*G triplets the N7 atom of the second strand is always involved in hydrogen bonding. In the G.C*C triplets, either N3 or 02 in the third strand cytosine can interchangeably act as a hydrogen bond acceptor.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.