186
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Evidence for Long Poly(dA).Poly(dT) Tracts in D. Discoideum DNA at High Frequencies and Their Preferential Avoidance of Nucleosomal DNA Core Regions

, &
Pages 429-446 | Received 31 Jul 2005, Published online: 24 Jul 2012
 

Abstract

The eukaryote, Dictyostelium discoideum, has one of the most (A+T) rich genomes studied to date. Isolated nuclear D. discoideum DNA (AX3 strain) was used to qualitatively determine the frequency and length distribution of long (dA).(dT) homopolymer tracts in this genome, in comparison to the less (A+T) rich calf thymus and Schistosoma mansoni DNAs that had few observable long tracts. These experimental data accurately reflect the significantly elevated frequencies of long tracts found computationally within the D. discoideum intron and flanking sequences, but not exons. PCR amplification of long (dA).(dT) homopolymer tract containing sequences was carried out. Then experimental biotinylated (dT)jg probe hybridization to the PCR amplified DNA showed that the long (dA).(dT) homopolymer tracts were enriched in D. discoideum sequences only hundreds of base pair in length, under conditions where no equivalent hybridization was observed to S. mansoni DNA or calf DNA sequences. Similar probe hybridization to DNA isolated following micrococcal nuclease digestion of D. discoideum chromatin demonstrated that long (dA).(dT) homopolymer tracts were more highly enriched in nucleosomal DNA lengths that included the internucleosomal linker as compared to shorter linker free mononucleosomal lengths. This observation is in agreement with the frequency of tract spacing results calculated from GenBank sequence data. These frequency data indicate that adjacent long tracts plus the intervening spacer DNA are found at peak lengths (average 42bp), exactly characteristic of the internucleosomal spacer region of D. discoideum chromatin and are in sufficient number to be found in nearly half of all nucleosomes. Compared to shuffled tract sequence controls, these lengths of adjacent long tracts plus the intervening spacer DNA were found to be significantly enriched. Lesser enrichments are observed at lengths corresponding to adjacent tracts being separated by nucleosomal core length DNA sequences (145–185bp). These data strongly suggest that adjacent long tracts occur spaced at selected lengths so as to avoid the central core regions of nucleosomes and instead are found localized within internucleosomal DNA linker and core edge regions in D. discoideum chromatin.