250
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Comparative analysis of inosine-substituted duplex DNA by circular dichroism and X-ray crystallography

, , , & ORCID Icon
Pages 2753-2772 | Received 30 Jun 2017, Accepted 04 Aug 2017, Published online: 04 Sep 2017
 

Abstract

Leveraging structural biology tools, we report the results of experiments seeking to determine if the different mechanical properties of DNA polymers with base analog substitutions can be attributed, at least in part, to induced changes from classical B-form DNA. The underlying hypothesis is that different inherent bending and twisting flexibilities may characterize non-canonical B-DNA, so that it is inappropriate to interpret mechanical changes caused by base analog substitution as resulting simply from ‘electrostatic’ or ‘base stacking’ influences without considering the larger context of altered helical geometry. Circular dichroism spectra of inosine-substituted oligonucleotides and longer base-substituted DNAs in solution indicated non-canonical helical conformations, with the degree of deviation from a standard B-form geometry depending on the number of I⋅C pairs. X-ray diffraction of a highly inosine-substituted DNA decamer crystal (eight I⋅C and two A⋅T pairs) revealed an A-tract-like conformation with a uniformly narrow minor groove, reduced helical rise, and the majority of sugars adopting a C1′-exo (southeastern) conformation. This contrasts with the standard B-DNA geometry with C2′-endo sugar puckers (south conformation). In contrast, the crystal structure of a decamer with only four I⋅C pairs has a geometry similar to that of the reference duplex with eight G⋅C and two A⋅T pairs. The unique crystal geometry of the inosine-rich duplex is noteworthy given its unusual CD signature in solution and the altered mechanical properties of some inosine-containing DNAs.

Acknowledgments

We thank Marina Ramirez-Alvarado for instrument access and Zdzislaw Wawrzak for help with X-ray diffraction data collection and processing. The authors also thank Loren Williams for advice during the early stages of this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.