250
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Comparative analysis of inosine-substituted duplex DNA by circular dichroism and X-ray crystallography

, , , & ORCID Icon
Pages 2753-2772 | Received 30 Jun 2017, Accepted 04 Aug 2017, Published online: 04 Sep 2017

References

  • Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., … Zwart, P. H. (2010). PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D Biological Crystallography, 66, 213–221.10.1107/S0907444909052925
  • Anosova, I., Kowal, E. A., Dunn, M. R., Chaput, J. C., Van Horn, W. D., & Egli, M. (2016). The structural diversity of artificial genetic polymers. Nucleic Acids Research, 44, 1007–1021.10.1093/nar/gkv1472
  • Balaceanu, A., Pasi, M., Dans, P. D., Hospital, A., Lavery, R., & Orozco, M. (2017). The role of unconventional hydrogen bonds in determining BII propensities in B-DNA. The Journal of Physical Chemistry Letters, 8, 21–28.10.1021/acs.jpclett.6b02451
  • Barbič, A., Zimmer, D. P., & Crothers, D. M. (2003). Structural origins of adenine-tract bending. Proceedings of the National Academy of Sciences of the United States of America, 100, 2369–2373.10.1073/pnas.0437877100
  • Berger, I., Tereshko, V., Ikeda, H., Marquez, V. E., & Egli, M. (1998). Crystal structures of B-DNA with incorporated 2′-deoxy-2′-fluoro-arabino-furanosyl thymines: Implications of conformational preorganization for duplex stability. Nucleic Acids Research, 26, 2473–2480.10.1093/nar/26.10.2473
  • Brahms, S., & Brahms, J. G. (1990). DNA with adenine tracts contains poly(dA).poly(dT) conformational features in solution. Nucleic Acids Research, 18, 1559–1564.10.1093/nar/18.6.1559
  • Brown, T., Hunter, W. N., Kneale, G., & Kennard, O. (1986). Molecular structure of the G.A base pair in DNA and its implications for the mechanism of transversion mutations. Proceedings of the National Academy of Sciences of the United States of America, 83, 2402–2406.10.1073/pnas.83.8.2402
  • Brown, T., Leonard, G. A., Booth, E. D., & Chambers, J. (1989). Crystal structure and stability of a DNA duplex containing A(anti).G(syn) base-pairs. Journal of Molecular Biology, 207, 455–457.10.1016/0022-2836(89)90268-4
  • Case-Green, S. C., & Southern, E. M. (1994). Studies on the base pairing properties of deoxyinosine by solid phase hybridisation to oligonucleotides. Nucleic Acids Research, 22, 131–136.10.1093/nar/22.2.131
  • Chen, X., Mitra, S. N., Rao, S. T., Sekar, K., & Sundaralingam, M. (1998). A novel end-to-end binding of two netropsins to the DNA decamers d(CCCCCIIIII)2, d(CCCBr 5CCIIIII)2and d(CBr5CCCCIIIII)2. Nucleic Acids Research, 26, 5464–5471.10.1093/nar/26.23.5464
  • Collaborative Computational Project, N. (1994). The CCP4 suite: Programs for protein crystallography. Acta Crystallographica Section D Biological Crystallography, 50, 760–763.
  • Corfield, P. W., Hunter, W. N., Brown, T., Robinson, P., & Kennard, O. (1987). Inosine.adenine base pairs in a B-DNA duplex. Nucleic Acids Research, 15, 7935–7949.10.1093/nar/15.19.7935
  • Cruse, W. B., Aymani, J., Kennard, O., Brown, T., Jack, A. G., & Leonard, G. A. (1989). Refined crystal structure of an octanucleotide duplex with I.T. mismatched base pairs. Nucleic Acids Research, 17, 55–72.10.1093/nar/17.1.55
  • Dans, P. D., Danilane, L., Ivani, I., Drsata, T., Lankas, F., Hospital, A., … Orozco, M. (2016). Long-timescale dynamics of the Drew-Dickerson dodecamer. Nucleic Acids Research, 44, 4052–4066.10.1093/nar/gkw264
  • Diekmann, S., von Kitzing, E., McLaughlin, L., Ott, J., & Eckstein, F. (1987). The influence of exocyclic substituents of purine bases on DNA curvature. Proceedings of the National Academy of Sciences of the United States of America, 84, 8257–8261.10.1073/pnas.84.23.8257
  • Ding, D., Gryaznov, S. M., & Wilson, W. D. (1998). NMR solution structure of the N3′ –> P5′ phosphoramidate duplex d(CGCGAATTCGCG)2 by the iterative relaxation matrix approach. Biochemistry, 37, 12082–12093.10.1021/bi980711y
  • Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K., & Dickerson, R. E. (1981). Structure of a B-DNA dodecamer: Conformation and dynamics. Proceedings of the National Academy of Sciences of the United States of America, 78, 2179–2183.10.1073/pnas.78.4.2179
  • Drsata, T., Spackova, N., Jurecka, P., Zgarbova, M., Sponer, J., & Lankas, F. (2014). Mechanical properties of symmetric and asymmetric DNA A-tracts: Implications for looping and nucleosome positioning. Nucleic Acids Research, 42, 7383–7394.10.1093/nar/gku338
  • Egli, M. (2016). Diffraction techniques in structural biology. Current Protocols in Nucleic Acid Chemistry, 65, 7.13.1-7.13.41..
  • Egli, M., Lubini, P., & Pallan, P. S. (2007). The long and winding road to the structure of homo-DNA. Chemical Society Reviews, 36, 31–45.10.1039/B606807C
  • Egli, M., Tereshko, V., Teplova, M., Minasov, G., Joachimiak, A., Sanishvili, R., … Manoharan, M. (1998). X-ray crystallographic analysis of the hydration of A- and B-form DNA at atomic resolution. Biopolymers, 48, 234–252.10.1002/(SICI)1097-0282(1998)48:4<234::AID-BIP4>3.0.CO;2-H
  • El Hassan, M. A., & Calladine, C. R. (1996). Propeller-twisting of base-pairs and the conformational mobility of dinucleotide steps in DNA. Journal of Molecular Biology, 259, 95–103.10.1006/jmbi.1996.0304
  • El Hassan, M. A., & Calladine, C. R. (1997). Conformational characteristics of DNA: Empirical classifications and a hypothesis for the conformational behaviour of dinucleotide steps. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 355, 43–100.10.1098/rsta.1997.0002
  • Emsley, P., & Cowtan, K. (2004). Coot: Model-building tools for molecular graphics. Acta Crystallographica Section D Biological Crystallography, 60, 2126–2132.10.1107/S0907444904019158
  • Fishel, R., Anziano, P., & Rich, A. (1990). [35] Z-DNA affinity chromatography. Methods in Enzymology, 184, 328–340.10.1016/0076-6879(90)84289-S
  • Franklin, R. E., & Gosling, R. G. (1953). Molecular configuration in sodium thymonucleate. Nature, 171, 740–741.10.1038/171740a0
  • Friedman, J., & Tibshirani, R. (1984). The monotone smoothing of scatterplots. Technometrics, 26, 243–250.10.1080/00401706.1984.10487961
  • Gessner, R. V., Frederick, C. A., Quigley, G. J., Rich, A., & Wang, A. H. (1989). The molecular structure of the left-handed Z-DNA double helix at 1.0-A atomic resolution. Geometry, conformation, and ionic interactions of d(CGCGCG). Journal of Biological Chemistry, 264, 7921–7935.
  • Harteis, S., & Schneider, S. (2014). Making the bend: DNA tertiary structure and protein-DNA interactions. International Journal of Molecular Sciences, 15, 12335–12363.10.3390/ijms150712335
  • Hartmann, B., Piazzola, D., & Lavery, R. (1993). B I - B II transitions in B-DNA. Nucleic Acids Research, 21, 561–568.10.1093/nar/21.3.561
  • Hays, F. A., Jones, Z. J., & Ho, P. S. (2004). Influence of minor groove substituents on the structure of DNA Holliday junctions. Biochemistry, 43, 9813–9822.10.1021/bi049461d
  • Heath, P. J., Clendenning, J. B., Fujimoto, B. S., & Schurr, J. M. (1996). Effect of bending strain on the torsion elastic constant of DNA. Journal of Molecular Biology, 260, 718–730.10.1006/jmbi.1996.0432
  • Heinemann, U., Alings, C., & Hahn, M. (1994). Crystallographic studies of DNA helix structure. Biophysical Chemistry, 50, 157–167.10.1016/0301-4622(94)85028-3
  • Holbrook, S. R., Dickerson, R. E., & Kim, S. H. (1985). Anisotropic thermal-parameter refinement of the DNA dodecamer CGCGAATTCGCG by the segmented rigid-body method. Acta Crystallographica Section B-Structural Science, 41, 255–262.10.1107/S0108768185002087
  • Hud, N. V., & Plavec, J. (2003). A unified model for the origin of DNA sequence-directed curvature. Biopolymers, 69, 144–158.10.1002/(ISSN)1097-0282
  • Hud, N. V., & Polak, M. (2001). DNA-cation interactions: The major and minor grooves are flexible ionophores. Current Opinion in Structural Biology, 11, 293–301.10.1016/S0959-440X(00)00205-0
  • Hunter, W. N., Brown, T., & Kennard, O. (1986). Structural features and hydration of d(C-G-C-G-A-A-T-T-A-G-C-G); a double helix containing two G.A mispairs. Journal of Biomolecular Structure and Dynamics, 4, 173–191.10.1080/07391102.1986.10506338
  • Imeddourene, A. B., Xu, X., Zargarian, L., Oguey, C., Foloppe, N., Mauffret, O., & Hartmann, B. (2016). The intrinsic mechanics of B-DNA in solution characterized by NMR. Nucleic Acids Research, 44, 3432–3447.10.1093/nar/gkw084
  • Janke, E. M., Riechert-Krause, F., & Weisz, K. (2011). Low-temperature NMR studies on inosine wobble base pairs. The Journal of Physical Chemistry B, 115, 8569–8574.10.1021/jp200840j
  • Koo, H. S., & Crothers, D. M. (1987). Chemical determinants of DNA bending at adenine-thymine tracts. Biochemistry, 26, 3745–3748.10.1021/bi00386a070
  • Kumar, V. D., Harrison, R. W., Andrews, L. C., & Weber, I. T. (1992). Crystal structure at 1.5-A resolution of d(CGCICICG), an octanucleotide containing inosine, and its comparison with d(CGCG) and d(CGCGCG) structures. Biochemistry, 31, 1541–1550.10.1021/bi00120a035
  • Kypr, J., Kejnovska, I., Renciuk, D., & Vorlickova, M. (2009). Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Research, 37, 1713–1725.10.1093/nar/gkp026
  • Lavery, R., & Sklenar, H. (1996). Curves 5.1: Helical analysis of irregular nucleic acids. Institut de Biologie PhysicoChimique.
  • Lavery, R. & Sklenar, H. (1988). The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. Journal of Biomolecular Structure and Dynamics, 6, 63–91.
  • Lavery, R. & Sklenar, H. (1989). Defining the structure of irregular nucleic acids: Conventions and principles. Journal of Biomolecular Structure and Dynamics, 6, 655–667.
  • Leonard, G. A., Booth, E. D., Hunter, W. N., & Brown, T. (1992). The conformational variability of an adenosine.inosine base-pair in a synthetic DNA dodecamer. Nucleic Acids Research, 20, 4753–4759.10.1093/nar/20.18.4753
  • Leslie, A. G., Arnott, S., Chandrasekaran, R., & Ratliff, R. L. (1980). Polymorphism of DNA double helices. Journal of Molecular Biology, 143, 49–72.10.1016/0022-2836(80)90124-2
  • Lipanov, A., Kopka, M. L., Kaczor-Grzeskowiak, M., Quintana, J., & Dickerson, R. E. (1993). Structure of the B-DNA decamer C-C-A-A-C-I-T-T-G-G in two different space groups: Conformational flexibility of B-DNA. Biochemistry, 32, 1373–1389.10.1021/bi00056a024
  • Lu, X.-J., & Olson, W. K. (2003). 3DNA: A software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Research, 31, 5108–5121.10.1093/nar/gkg680
  • MacDonald, D., Herbert, K., Zhang, X., Polgruto, T., & Lu, P. (2001). Solution structure of an A-tract DNA bend. Journal of Molecular Biology, 306, 1081–1098.10.1006/jmbi.2001.4447
  • Maehigashi, T., Hsiao, C., Woods, K. K., Moulaei, T., Hud, N. V., & Williams, L. D. (2012). B-DNA structure is intrinsically polymorphic: Even at the level of base pair positions. Nucleic Acids Research, 40, 3714–3722.10.1093/nar/gkr1168
  • Malinina, L., Tereshko, V., Ivanova, E., Subirana, J. A., Zarytova, V., & Nekrasov, Y. (1998). Structural variability and new intermolecular interactions of Z-DNA in crystals of d(pCpGpCpGpCpG). Biophysical Journal, 74, 2482–2490.10.1016/S0006-3495(98)77956-1
  • Manning, G. S. (2006). The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force. Biophysical Journal, 91, 3607–3616.10.1529/biophysj.106.089029
  • Mergny, J. L., & Lacroix, L. (2003). Analysis of thermal melting curves. Oligonucleotides, 13, 515–537.10.1089/154545703322860825
  • Minasov, G., Tereshko, V., & Egli, M. (1999). Atomic-resolution crystal structures of B-DNA reveal specific influences of divalent metal ions on conformation and packing. Journal of Molecular Biology, 291, 83–99.10.1006/jmbi.1999.2934
  • Mitsui, Y., Langridge, R., Shortle, B. E., Cantor, C. R., Grant, R. C., Kodama, M., & Wells, R. D. (1970). Physical and enzymatic studies on poly d(I–C). Poly d(I–C), an unusual double-helical DNA. Nature, 228, 1166–1169.10.1038/2281166a0
  • Mollegaard, N. E., Bailly, C., Waring, M. J., & Nielsen, P. E. (1997). Effects of diaminopurine and inosine substitutions on A-tract induced DNA curvature. Importance of the 3′-A-tract junction. Nucleic Acids Research, 25, 3497–3502.10.1093/nar/25.17.3497
  • Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., … Vagin, A. A. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica Section D Biological Crystallography, 67, 355–367.10.1107/S0907444911001314
  • Okonogi, T. M., Alley, S. C., Reese, A. W., Hopkins, P. B., & Robinson, B. H. (2000). Sequence-dependent dynamics in duplex DNA. Biophysical Journal, 78, 2560–2571.10.1016/S0006-3495(00)76800-7
  • Otwinowski, Z., & Minor, W. (1997). [20] Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol, 276, 307–326.10.1016/S0076-6879(97)76066-X
  • Peters, J. P., Mogil, L. S., McCauley, M. J., Williams, M. C., & Maher III, L. J. (2014). Mechanical properties of base-modified DNA are not strictly determined by base stacking or electrostatic interactions. Biophysical Journal, 107, 448–459.10.1016/j.bpj.2014.04.066
  • Peters, J. P., Yelgaonkar, S. P., Srivatsan, S. G., Tor, Y., & Maher III, L. J. (2013). Mechanical properties of DNA-like polymers. Nucleic Acids Research, 41, 10593–10604.10.1093/nar/gkt808
  • Privé, G. G., Heinemann, U., Chandrasegaran, S., Kan, L. S., Kopka, M. L., & Dickerson, R. E. (1987). Helix geometry, hydration, and G.A mismatch in a B-DNA decamer. Science, 238, 498–504.10.1126/science.3310237
  • Privé, G. G., Yanagi, K., & Dickerson, R. E. (1991). Structure of the B-DNA decamer C-C-A-A-C-G-T-T-G-G and comparison with isomorphous decamers C-C-A-A-G-A-T-T-G-G and C-C-A-G-G-C-C-T-G-G. Journal of Molecular Biology, 217, 177–199.10.1016/0022-2836(91)90619-H
  • Ramakrishnan, B., & Sundaralingam, M. (1993a). Crystal packing effects on A-DNA helix parameters: A comparative study of the isoforms of the tetragonal & hexagonal family of octamers with differing base sequences. Journal of Biomolecular Structure and Dynamics, 11, 11–26.10.1080/07391102.1993.10508706
  • Ramakrishnan, B., & Sundaralingam, M. (1993b). Evidence for crystal environment dominating base sequence effects on DNA conformation: Crystal structures of the orthorhombic and hexagonal polymorphs of the A-DNA decamer d(GCGGGCCCGC) and comparison with their isomorphous crystal structures. Biochemistry, 32, 11458–11468.10.1021/bi00093a025
  • Ramakrishnan, B., & Sundaralingam, M. (1995). Crystal structure of the A-DNA decamer d(CCIGGCCm5CGG) at 1.6 A showing the unexpected wobble I.m5C base pair. Biophysical Journal, 69, 553–558.10.1016/S0006-3495(95)79928-3
  • Schneider, T. R., & Sheldrick, G. M. (2002). Substructure solution with SHELXD. Acta Crystallographica Section D Biological Crystallography, 58, 1772–1779.10.1107/S0907444902011678
  • Schrodinger, L. (2015). The PyMOL molecular graphics system. Version 1.8.
  • Schurr, J. M., Delrow, J. J., Fujimoto, B. S., & Benight, A. S. (1997). The question of long-range allosteric transitions in DNA. Biopolymers, 44, 283–308.10.1002/(ISSN)1097-0282
  • Shatzky-Schwartz, M., Arbuckle, N. D., Eisenstein, M., Rabinovich, D., Bareket-Samish, A., Haran, T. E., … Shakked, Z. (1997). X-ray and solution studies of DNA oligomers and implications for the structural basis of A-tract-dependent curvature. Journal of Molecular Biology, 267, 595–623.10.1006/jmbi.1996.0878
  • Shi, K., Mitra, S. N., & Sundaralingam, M. (2002). Structure of the 1:1 netropsin-decamer d(CCIICICCII)2 complex with a single bound netropsin. Acta Crystallographica Section D Biological Crystallography, 58, 601–606.10.1107/S0907444902001889
  • Shui, X., McFail-Isom, L., Hu, G. G., & Williams, L. D. (1998). The B-DNA dodecamer at high resolution reveals a spine of water on sodium. Biochemistry, 37, 8341–8355.10.1021/bi973073c
  • Stefl, R., Wu, H., Ravindranathan, S., Sklenár, V., & Feigon, J. (2004). DNA A-tract bending in three dimensions: Solving the dA4T4 vs. dT4A4 conundrum. Proceedings of the National Academy of Sciences of the United States of America, 101, 1177–1182.10.1073/pnas.0308143100
  • Tereshko, V., Minasov, G., & Egli, M. (1999a). The Dickerson-Drew B-DNA dodecamer revisited at atomic resolution. Journal of the American Chemical Society, 121, 6970–6970.10.1021/ja995519d
  • Tereshko, V., Minasov, G., & Egli, M. (1999b). A “hydrat-ion” spine in a B-DNA minor groove. Journal of the American Chemical Society, 121, 3590–3595.10.1021/ja984346+
  • Tereshko, V., Portmann, S., Tay, E. C., Martin, P., Natt, F., Altmann, K. H., & Egli, M. (1998). Correlating structure and stability of DNA duplexes with incorporated 2′-O-modified RNA analogues. Biochemistry, 37, 10626–10634.10.1021/bi980392a
  • Terwilliger, T. C., Grosse-Kunstleve, R. W., Afonine, P. V., Moriarty, N. W., Zwart, P. H., Hung, L. W., … Adams, P. D. (2008). Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallographica Section D Biological Crystallography, 64, 61–69.10.1107/S090744490705024X
  • Tippin, D. B., & Sundaralingam, M. (1997). Nine polymorphic crystal structures of d(CCGGGCCCGG), d(CCGGGCCm5CGG), d(Cm5CGGGCCm5CGG) and d(CCGGGCC(Br)5CGG) in three different conformations: Effects of spermine binding and methylation on the bending and condensation of A-DNA. Journal of Molecular Biology, 267, 1171–1185.10.1006/jmbi.1997.0945
  • Vagin, A., & Teplyakov, A. (1997). MOLREP : An automated program for molecular replacement. Journal of Applied Crystallography, 30, 1022–1025.10.1107/S0021889897006766
  • van Dam, L., & Levitt, M. H. (2000). BII nucleotides in the B and C forms of natural-sequence polymeric DNA: A new model for the C form of DNA. Journal of Molecular Biology, 304, 541–561.10.1006/jmbi.2000.4194
  • Vargason, J. M., Eichman, B. F., & Ho, P. S. (2000). The extended and eccentric E-DNA structure induced by cytosine methylation or bromination. Nature Structural Biology, 7, 758–761.
  • Vargason, J. M., & Ho, P. S. (2002). The effect of cytosine methylation on the structure and geometry of the Holliday junction: The structure of d(CCGGTACm5CGG) at 1.5 A resolution. Journal of Biological Chemistry, 277, 21041–21049.10.1074/jbc.M201357200
  • Vorlickova, M., & Sagi, J. (1991). Transitions of poly(dI-dC), poly(dI-methyl5dC) and poly(dI-bromo5dC) among and within the B-, Z-, A- and X-DNA families of conformations. Nucleic Acids Research, 19, 2343–2347.10.1093/nar/19.9.2343
  • Wang, A. H.-J., Quigley, G. J., Kolpak, F. J., Crawford, J. L., van Boom, J. H., van der Marel, G. A., & Rich, A. (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature, 282, 680–686.10.1038/282680a0
  • Watson, J. D., & Crick, F. H. (1953). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 171, 737–738.10.1038/171737a0
  • Wing, R., Drew, H., Takano, T., Broka, C., Tanaka, S., Itakura, K., & Dickerson, R. E. (1980). Crystal structure analysis of a complete turn of B-DNA. Nature, 287, 755–758.10.1038/287755a0
  • Woods, K. K., Maehigashi, T., Howerton, S. B., Sines, C. C., Tannenbaum, S., & Williams, L. D. (2004). High-resolution structure of an extended A-tract: [d(CGCAAATTTGCG)]2. Journal of the American Chemical Society, 126, 15330–15331.10.1021/ja045207x
  • Xuan, J. C., & Weber, I. T. (1992). Crystal structure of a B-DNA dodecamer containing inosine, d(CGCIAATTCGCG), at 2.4 Å resolution and its comparison with other B-DNA dodecamers. Nucleic Acids Research, 20, 5457–5464.10.1093/nar/20.20.5457
  • Young, M. A., Srinivasan, J., Goljer, I., Kumar, S., Beveridge, D. L., & Bolton, P. H. (1995). [5] Structure determination and analysis of local bending in an A-tract DNA duplex: Comparison of results from crystallography, nuclear magnetic resonance, and molecular dynamics simulation on d(CGCAAAAATGCG). Methods in Enzymology, 261, 121–144.10.1016/S0076-6879(95)61007-3
  • Zheng, G., Lu, X.-J., & Olson, W. K. (2009). Web 3DNA – a web server for the analysis, reconstruction, and visualization of three-dimensional nucleic-acid structures. Nucleic Acids Research, 37, W240–W246.10.1093/nar/gkp358

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.