440
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Prediction of zinc binding sites in proteins using sequence derived information

& ORCID Icon
Pages 4413-4423 | Received 13 Jul 2017, Accepted 06 Dec 2017, Published online: 15 Jan 2018
 

Abstract

Zinc is one the most abundant catalytic cofactor and also an important structural component of a large number of metallo-proteins. Hence prediction of zinc metal binding sites in proteins can be a significant step in annotation of molecular function of a large number of proteins. Majority of existing methods for zinc-binding site predictions are based on a data-set of proteins, which has been compiled nearly a decade ago. Hence there is a need to develop zinc-binding site prediction system using the current updated data to include recently added proteins. Herein, we propose a support vector machine-based method, named as ZincBinder, for prediction of zinc metal-binding site in a protein using sequence profile information. The predictor was trained using fivefold cross validation approach and achieved 85.37% sensitivity with 86.20% specificity during training. Benchmarking on an independent non-redundant data-set, which was not used during training, showed better performance of ZincBinder vis-à-vis existing methods. Executable versions, source code, sample datasets, and usage instructions are available at http://proteininformatics.org/mkumar/znbinder/

Acknowledgement

The authors would also like to thank University of Delhi for providing resources to carry out this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.