440
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Prediction of zinc binding sites in proteins using sequence derived information

& ORCID Icon
Pages 4413-4423 | Received 13 Jul 2017, Accepted 06 Dec 2017, Published online: 15 Jan 2018

References

  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.10.1093/nar/25.17.3389
  • Andreini, C., Cavallaro, G., Lorenzini, S., & Rosato, A. (2013). Metal PDB: A database of metal sites in biological macromolecular structures. Nucleic Acids Research, 41, D312–319.
  • Auld, D. S. (2001). Zinc coordination sphere in biochemical zinc sites. BioMetals, 14, 271–313.10.1023/A:1012976615056
  • Babor, M., Gerzon, S., Raveh, B., Sobolev, V., & Edelman, M. (2008). Prediction of transition metal-binding sites from apo protein structures. Proteins, 70, 208–217.
  • Bewick, V., Cheek, L., & Ball, J. (2004). Statistics review 13: Receiver operating characteristic curves. Critical Care, 8, 508–512.10.1186/cc3000
  • Bock, J. R., & Gough, D. A. (2001). Predicting protein – protein interactions from primary structure. Bioinformatics, 17, 455–460.10.1093/bioinformatics/17.5.455
  • Bordner, A. J. (2008). Predicting small ligand binding sites in proteins using backbone structure. Bioinformatics, 24, 2865–2871.10.1093/bioinformatics/btn543
  • Cai, Y. D., & Chou, K. C. (2003). Nearest neighbour algorithm for predicting protein subcellular location by combining functional domain composition and pseudo-amino acid composition. Biochemical and Biophysical Research Communications, 305, 407–411.10.1016/S0006-291X(03)00775-7
  • Chen, K., Kurgan, L. A., & Ruan, J. (2008). Prediction of protein structural class using novel evolutionary collocation-based sequence representation. Journal of Computational Chemistry, 29, 1596–1604.10.1002/jcc.v29:10
  • Chen, Z., Wang, Y., Zhai, Y. F., Song, J., & Zhang, Z. (2013). Zinc Explorer: An accurate hybrid method to improve the prediction of zinc-binding sites from protein sequences. Molecular BioSystems, 9, 2213–2222.10.1039/c3mb70100j
  • Chou, K. C. (2011). Some remarks on protein attribute prediction and pseudo amino acid composition. Journal of Theoretical Biology, 273, 236–247.10.1016/j.jtbi.2010.12.024
  • Chou, K. C., & Cai, Y. D. (2002). Using functional domain composition and support vector machines for prediction of protein subcellular location. Journal of Biological Chemistry, 277, 45765–45769.10.1074/jbc.M204161200
  • Chou, K. C., & Shen, H. B. (2007). Mem Type-2L: A web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochemical and Biophysical Research Communications, 360, 339–345.10.1016/j.bbrc.2007.06.027
  • Chou, K. C., & Shen, H. B. (2008). ProtIdent: A web server for identifying proteases and their types by fusing functional domain and sequential evolution information. Biochemical and Biophysical Research Communications, 376, 321–325.10.1016/j.bbrc.2008.08.125
  • Chou, K. C., & Zhang, C. T. (1995). Prediction of protein structural classes. Critical Reviews in Biochemistry and Molecular Biology, 30, 275–349.10.3109/10409239509083488
  • Coleman, J. E. (1992). Zinc proteins: Enzymes, storage proteins, transcription factors, and replication proteins. Annual Review of Biochemistry, 61, 897–946.10.1146/annurev.bi.61.070192.004341
  • Ding, C. H., & Dubchak, I. (2001). Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, 17, 349–358.10.1093/bioinformatics/17.4.349
  • Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., & Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16, 906–914.10.1093/bioinformatics/16.10.906
  • Haas, K. L., & Franz, K. J. (2009). Application of metal coordination chemistry to explore and manipulate cell biology. Chemical Reviews, 109, 4921–4960.10.1021/cr900134a
  • Harding, M. M. (2004). The architecture of metal coordination groups in proteins. Acta Crystallographica Section D Biological Crystallography, 60, 849–859.10.1107/S0907444904004081
  • He, W., Liang, Z., Teng, M., & Niu, L. (2015). mFASD: A structure-based algorithm for discriminating different types of metal-binding sites. Bioinformatics, 31, 1938–1944.10.1093/bioinformatics/btv044
  • Hua, S., & Sun, Z. (2001). A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. Journal of Molecular Biology, 308, 397–407.10.1006/jmbi.2001.4580
  • Jones, D. T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology, 292, 195–202.10.1006/jmbi.1999.3091
  • Jeong, J. C., Lin, X., & Chen, X. W. (2011). On position-specific scoring matrix for protein function prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8, 308–315.10.1109/TCBB.2010.93
  • Jiangning, S., Chen, L., Cheng, Z., Jerico, R., Ziding, Z., & Geoffrey, I. W. (2016). Metal explorer, a bioinformatics tool for the improved prediction of eight types of metal-binding sites using a random forest algorithm with two-step feature selection. Current Bioinformatics, 11, 1–10.
  • Joachims, T. (1998/1999). SVM learning practical advances in kernel methods – support vector learning. In B. Scholkopf, C. J. C. Burges & A. J. Smola (Eds.), Advances in kernel methods – Support vector learning. Cambridge, MA: MIT Press.
  • Johnson, N. P. (2004). Advantages to transforming the receiver operating characteristic (ROC) curve into likelihood ratio co-ordinates. Statistics in Medicine, 23, 2257–2266.10.1002/(ISSN)1097-0258
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577–2637.10.1002/(ISSN)1097-0282
  • Kaur, H., & Raghava, G. P. (2003). Prediction of beta-turns in proteins from multiple alignment using neural network. Protein Science, 12, 627–634.10.1110/ps.0228903
  • Khrustaleva, T. A. (2014). Secondary structure preferences of mn (2+) binding sites in bacterial proteins. Advances in Bioinformatics, 2014, 501841.
  • Kumar, M., & Raghava, G. P. (2009). Prediction of nuclear proteins using SVM and HMM models. BMC Bioinformatics, 10, 22.10.1186/1471-2105-10-22
  • Kumar, M., Gromiha, M. M., & Raghava, G. P. (2008). Prediction of RNA binding sites in a protein using SVM and PSSM profile. Proteins: Structure, Function, and Bioinformatics, 71, 189–194.10.1002/prot.v71:1
  • Kumar, M., Verma, R., & Raghava, G. P. (2006). Prediction of mitochondrial proteins using support vector machine and hidden Markov model. Journal of Biological Chemistry, 281, 5357–5363.10.1074/jbc.M511061200
  • Kumar, R., Ariöz, C., Li, Y., Bosaeus, N., Rocha, S., & Wittung-Stafshede, P. (2017). Disease-causing point-mutations in metal-binding domains of Wilson disease protein decrease stability and increase structural dynamics. BioMetals, 30, 27–35.10.1007/s10534-016-9976-7
  • Kumar, R., Kumari, B., Srivastava, A., & Kumar, M. (2014). NRfamPred: A proteome-scale two level method for prediction of nuclear receptor proteins and their sub-families. Scientific Reports, 4, 6810.
  • Kumar, R., Srivastava, A., Kumari, B., & Kumar, M. (2015). Prediction of β-lactamase and its class by Chou’s pseudo-amino acid composition and support vector machine. Journal of Theoretical Biology, 365, 96–103.10.1016/j.jtbi.2014.10.008
  • Lesburg, C. A., Huang, C., Christianson, D. W., & Fierke, C. A. (1997). Histidine –> carboxamide ligand substitutions in the zinc binding site of carbonic anhydrase II alter metal coordination geometry but retain catalytic activity. Biochemistry, 36, 15780–15791.10.1021/bi971296x
  • Li, Z. W., You, Z. H., Chen, X., Li, L. P., Huang, D. S., Yan, G. Y., … Huang, Y. A. (2017). Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier. Oncotarget, 8, 23638–23649.
  • Lin, C. T., Lin, K. L., Yang, C. H., Chung, I. F., Huang, C. D., & Yang, Y. S. (2005). Protein metal binding residue prediction based on neural networks. International Journal of Neural Systems, 15, 71–84.
  • Liu, B., Wu, H., Zhang, D., Wang, X., & Chou, K. C. (2017). Pse-analysis: A python package for DNA/RNA and protein/ peptide sequence analysis based on pseudo components and kernel methods. Oncotarget, 8, 13338–13343.
  • Liu, Z., Wang, Y., Zhou, C., Xue, Y., Zhao, W., & Liu, H. (2014). Computationally characterizing and comprehensive analysis of zinc-binding sites in proteins. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics, 1844, 171–180.10.1016/j.bbapap.2013.03.001
  • McCall, K. A., Huang, C., & Fierke, C. A. (2000). Function and mechanism of zinc metalloenzymes. Journal of Nutrition, 130, 1437S–1446S.
  • McPherson, A. (1999). Crystallization of biological macromolecules. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Menchetti, S., Passerini, A., Frasconi, P., Andreini, C., & Rosato, A. (2006). Improving prediction of zinc binding sites by modeling the linkage between residues close in sequence. In A. Apostolico, C. Guerra, S. Istrail, P. A. Pevzner, & M. Waterman (Eds.), Research in computational molecular biology. RECOMB 2006. Lecture notes in computer science (Vol. 3909). Berlin, Heidelberg: Springer.
  • Muthukrishnan, S., Puri, M., & Lefevre, C. (2014). Support vector machine (SVM) based multiclass prediction with basic statistical analysis of plasminogen activators. BMC Research Notes, 7, 63.10.1186/1756-0500-7-63
  • Palzkill, T. (2013). Metallo-β-lactamase structure and function. Annals of the New York Academy of Sciences, 1277, 91–104.10.1111/j.1749-6632.2012.06796.x
  • Passerini, A., Punta, M., Ceroni, A., Rost, B., & Frasconi, P. (2006). Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks. Proteins: Structure, Function, and Bioinformatics, 65, 305–316.10.1002/prot.21135
  • Passerini, A., Andreini, C., Menchetti, S., Rosato, A., & Frasconi, P. (2007). Predicting zinc binding at the proteome level. BMC Bioinformatics, 8, 39.10.1186/1471-2105-8-39
  • Rashid, M., Saha, S., & Raghava, G. P. (2007). Support vector machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs. BMC Bioinformatics, 8, 337.10.1186/1471-2105-8-337
  • Schlessinger, A., Punta, M., Yachdav, G., Kajan, L., & Rost, B. (2009). Improved disorder prediction by combination of orthogonal approaches. PLoS ONE, 4, e4433.10.1371/journal.pone.0004433
  • Shen, H. B., & Chou, K. C. (2008). PseAAC: A flexible web server for generating various kinds of protein pseudo amino acid composition. Analytical Biochemistry, 373, 386–388.10.1016/j.ab.2007.10.012
  • Shu, N., Zhou, T., & Hovmöller, S. (2008). Prediction of zinc-binding sites in proteins from sequence. Bioinformatics, 24, 775–782.10.1093/bioinformatics/btm618
  • Sing, T., Sander, O., Beerenwinkel, N., & Lengauer, T. (2005). ROCR: Visualizing classifier performance in R. Bioinformatics, 21, 3940–3941.10.1093/bioinformatics/bti623
  • Sodhi, J. S., Bryson, K., McGuffin, L. J., Ward, J. J., Wernisch, L., & Jones, D. T. (2004). Predicting metal-binding site residues in low-resolution structural models. Journal of Molecular Biology, 342, 307–320.10.1016/j.jmb.2004.07.019
  • Strater, N., Klabunde, T., Tucker, P., Witzel, H., & Krebs, B. (1995). Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)–Zn(II) active site. Science, 268, 1489–1492.10.1126/science.7770774
  • Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293.10.1126/science.3287615
  • Uversky, V. N., Radivojac, P., Iakoucheva, L. M., Obradovic, Z., & Dunker, A. K. (2007). Prediction of intrinsic disorder and its use in functional proteomics. Methods in Molecular Biology, 408, 69–92.10.1007/978-1-59745-547-3
  • Vallee, B. L., & Auld, D. S. (1993). New perspective on zinc biochemistry: Cocatalytic sites in multi-zinc enzymes. Biochemistry, 32, 6493–6500.10.1021/bi00077a001
  • Verma, R., Varshney, G. C., & Raghava, G. P. (2010). Prediction of mitochondrial proteins of malaria parasite using split amino acid composition and PSSM profile. Amino Acids, 39, 101–110.10.1007/s00726-009-0381-1
  • Wang, G., & Dunbrack, R. L., Jr (2003). PISCES: A protein sequence culling server. Bioinformatics, 19, 1589–1591.10.1093/bioinformatics/btg224
  • Wang, B., Wang, M., & Li, A. (2017). Prediction of post-translational modification sites using multiple kernel support vector machine. PeerJ, 5, e3261.10.7717/peerj.3261
  • Wang, J., Yang, B., Revote, J., Leier, A., Marquez-Lago, T. T., Webb, G., … Lithgow, T. (2017). POSSUM: A bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles. Bioinformatics, 33, 2756–2758.10.1093/bioinformatics/btx302
  • Ward, J. J., McGuffin, L. J., Bryson, K., Buxton, B. F., & Jones, D. T. (2004). The DISOPRED server for the prediction of protein disorder. Bioinformatics, 20, 2138–2139.10.1093/bioinformatics/bth195
  • Xie, D., Li, A., Wang, M., Fan, Z., & Feng, H. (2005). LOCSVMPSI: A web server for subcellular localization of eukaryotic proteins using SVM and profile of PSI-BLAST. Nucleic Acids Research, 33, W105–W110.10.1093/nar/gki359
  • Zavaljevski, N., Stevens, F. J., & Reifman, J. (2002). Support vector machines with selective kernel scaling for protein classification and identification of key amino acid positions. Bioinformatics, 18, 689–696.10.1093/bioinformatics/18.5.689
  • Zhang, S., Ye, F., & Yuan, X. (2012). Using principal component analysis and support vector machine to predict protein structural class for low-similarity sequences via PSSM. Journal of Biomolecular Structure and Dynamics, 29, 634–642.
  • Zhao, X., Li, X., Ma, Z., & Yin, M. (2011). Prediction of lysine ubiquitylation with ensemble classifier and feature selection. International Journal of Molecular Sciences, 12, 8347–8361.10.3390/ijms12128347
  • Zhao, W., Xu, M., Liang, Z., Ding, B., Niu, L., Liu, H., & Teng, M. (2011). Structure-based de novo prediction of zinc-binding sites in proteins of unknown function. Bioinformatics, 27, 1262–1268.10.1093/bioinformatics/btr133
  • Zheng, C., Wang, M., Takemoto, K., Akutsu, T., Zhang, Z., & Song, J. (2012). An integrative computational framework based on a two-step random forest algorithm improves prediction of zinc-binding sites in proteins. PLoS ONE, 7, e49716.10.1371/journal.pone.0049716

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.