506
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Comparative analysis of thermal unfolding simulations of RNA recognition motifs (RRMs) of TAR DNA-binding protein 43 (TDP-43)

ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 178-194 | Received 06 Oct 2017, Accepted 15 Dec 2017, Published online: 10 Jan 2018
 

Abstract

TAR DNA-binding protein 43 (TDP-43) inclusions have been found in Amyotrophic lateral sclerosis (ALS) and several other neurodegenerative diseases. Many studies suggest the involvement of RNA recognition motifs (RRMs) in TDP-43 proteinopathy. To elucidate the structural stability and the unfolding dynamics of RRMs, we have carried out atomistic molecular dynamics simulations at two different temperatures (300 and 500 K). The simulations results indicate that there are distinct structural differences in the unfolding pathway between the two domains and RRM1 unfolds faster than RRM2 in accordance with the lower thermal stability found experimentally. The unfolding behaviors of secondary structures showed that the α-helix was more stable than β-sheet and structural rearrangements of β-sheets results in formation of additional α-helices. At higher temperature, RRM1 exhibit increased overall flexibility and unfolding than RRM2. The temperature-dependent free energy landscapes consist of multiple metastable states stabilized by non-native contacts and hydrogen bonds in RRM2, thus rendering the RRM2 more prone to misfolding. The structural rearrangements of RRM2 could lead to aberrant protein–protein interactions that may account for enhanced aggregation and toxicity of TDP-43. Our analysis, thus identify the structural and thermodynamic characteristics of the RRMs of TDP-43, which will serve to uncover molecular mechanisms and driving forces in TDP-43 misfolding and aggregation.

Acknowledgments

A.P. and V.K. sincerely thank Science and Engineering Research Board (SERB), Government of India for the award of Young Scientist, YSS/2015/000228 and SB/YS/LS-161/2014. Authors sincerely thank DST-SERB for providing the GPU computational Facility.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.