506
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Comparative analysis of thermal unfolding simulations of RNA recognition motifs (RRMs) of TAR DNA-binding protein 43 (TDP-43)

ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 178-194 | Received 06 Oct 2017, Accepted 15 Dec 2017, Published online: 10 Jan 2018

References

  • Arai, T., Hasegawa, M., Akiyama, H., Ikeda, K., Nonaka, T., Mori, H., … Oda, T. (2006). TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochemical and Biophysical Research Communications, 351(3), 602–611. doi:10.1016/j.bbrc.2006.10.093 S0006-291X(06)02318-7 [pii]
  • Beck, D. A., & Daggett, V. (2004). Methods for molecular dynamics simulations of protein folding/unfolding in solution. Methods, 34(1), 112–120. doi:10.1016/j.ymeth.2004.03.008 S1046202304000568 [pii]
  • Best, R. B. (2012). Atomistic molecular simulations of protein folding. Current Opinion in Structural Biology, 22(1), 52–61. doi:10.1016/j.sbi.2011.12.001 S0959-440X(11)00204-1 [pii]
  • Brooks, B. R., Miller, R. G., Swash, M., & Munsat, T. L. (2000). El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 1(5), 293–299.10.1080/146608200300079536
  • Buratti, E. (2015). Functional significance of TDP-43 mutations in disease. Advances in Genetics, 91, 1–53. doi:10.1016/bs.adgen.2015.07.001 S0065-2660(15)00007-3 [pii]
  • Buratti, E., & Baralle, F. E. (2001). Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. Journal of Biological Chemistry, 276(39), 36337–36343. doi:10.1074/jbc.M104236200 M104236200 [pii]
  • Buratti, E., & Baralle, F. E. (2012). TDP-43: Gumming up neurons through protein-protein and protein-RNA interactions. Trends in Biochemical Sciences, 37(6), 237–247. doi:10.1016/j.tibs.2012.03.003 S0968-0004(12)00046-1 [pii]
  • Buratti, E., Brindisi, A., Giombi, M., Tisminetzky, S., Ayala, Y. M., & Baralle, F. E. (2005). TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: An important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. Journal of Biological Chemistry, 280(45), 37572–37584. doi:10.1074/jbc.M505557200 M505557200 [pii]
  • Camilloni, C., Rocco, A. G., Eberini, I., Gianazza, E., Broglia, R. A., & Tiana, G. (2008). Urea and guanidinium chloride denature protein L in different ways in molecular dynamics simulations. Biophysical Journal, 94(12), 4654–4661. doi:10.1529/biophysj.107.125799 biophysj.107.125799 [pii]
  • Chen-Plotkin, A. S., Lee, V. M., & Trojanowski, J. Q. (2010). TAR DNA-binding protein 43 in neurodegenerative disease. Nature Reviews Neurology, 6(4), 211–220. doi:10.1038/nrneurol.2010.18 nrneurol.2010.18 [pii]
  • Chiang, C. H., Grauffel, C., Wu, L. S., Kuo, P. H., Doudeva, L. G., Lim, C., … Yuan, H. S. (2016). Structural analysis of disease-related TDP-43 D169G mutation: Linking enhanced stability and caspase cleavage efficiency to protein accumulation. Scientific Reports, 6, 38. doi:10.1038/srep21581 srep21581 [pii]
  • Cohen, T. J., Lee, V. M., & Trojanowski, J. Q. (2011). TDP-43 functions and pathogenic mechanisms implicated in TDP-43 proteinopathies. Trends in Molecular Medicine, 17(11), 659–667. doi:10.1016/j.molmed.2011.06.004 S1471-4914(11)00105-5 [pii]
  • Cushman, M., Johnson, B. S., King, O. D., Gitler, A. D., & Shorter, J. (2010). Prion-like disorders: Blurring the divide between transmissibility and infectivity. Journal of Cell Science, 123(8), 1191–1201. doi:10.1242/jcs.051672 123/8/1191 [pii]
  • D’Ambrogio, A., Buratti, E., Stuani, C., Guarnaccia, C., Romano, M., Ayala, Y. M., & Baralle, F. E. (2009). Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo. Nucleic Acids Research, 37(12), 4116–4126. doi:10.1093/nar/gkp342 gkp342 [pii]
  • Daggett, V. (2001). Molecular dynamics simulations of protein unfolding/folding. Methods in Molecular Biology, 168, 215–247. doi:10.1385/1-59259-193-0:215 1-59259-193-0-215 [pii]
  • Daggett, V. (2002). Molecular dynamics simulations of the protein unfolding/folding reaction. Accounts of Chemical Research, 35(6), 422–429. ar0100834 [pii]
  • Daggett, V., & Levitt, M. (1993). Protein unfolding pathways explored through molecular dynamics simulations. Journal of Molecular Biology, 232(2), 600–619. doi:10.1006/jmbi.1993.1414 S0022-2836(83)71414-2 [pii]
  • Darden, T., Perera, L., Li, L., & Pedersen, L. (1999). New tricks for modelers from the crystallography toolkit: The particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure, 7(3), R55–R60. S0969-2126(99)80033-1 [pii]
  • Day, R., Bennion, B. J., Ham, S., & Daggett, V. (2002). Increasing temperature accelerates protein unfolding without changing the pathway of unfolding. Journal of Molecular Biology, 322(1), 189–203. S0022283602006721 [pii]
  • Ding, Y., & Cai, Y. (2013). Conformational dynamics of xylanase a from Streptomyces lividans: Implications for TIM-barrel enzyme thermostability. Biopolymers, 99(9), 594–604. doi:10.1002/bip.22220
  • Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J., & Serrano, L. (2004). Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nature Biotechnology, 22(10), 1302–1306. doi:10.1038/nbt1012 nbt1012 [pii]
  • Gu, Z., Rao, M. K., Forsyth, W. R., Finke, J. M., & Matthews, C. R. (2007). Structural analysis of kinetic folding intermediates for a TIM barrel protein, indole-3-glycerol phosphate synthase, by hydrogen exchange mass spectrometry and Go model simulation. Journal of Molecular Biology, 374(2), 528–546. doi:10.1016/j.jmb.2007.09.024 S0022-2836(07)01198-9 [pii]
  • Hasegawa, M., Nonaka, T., Tsuji, H., Tamaoka, A., Yamashita, M., Kametani, F., … Akiyama, H. (2011). Molecular dissection of TDP-43 proteinopathies. Journal of Molecular Neuroscience, 45(3), 480–485. doi:10.1007/s12031-011-9571-x
  • Igaz, L. M., Kwong, L. K., Chen-Plotkin, A., Winton, M. J., Unger, T. L., Xu, Y., … Lee, V. M. (2009). Expression of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. Journal of Biological Chemistry, 284(13), 8516–8524. doi:10.1074/jbc.M809462200 M809462200 [pii]
  • Johnson, B. S., McCaffery, J. M., Lindquist, S., & Gitler, A. D. (2008). A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proceedings of the National Academy of Sciences, 105(17), 6439–6444. doi:10.1073/pnas.0802082105 0802082105 [pii]
  • Josephs, K. A., Whitwell, J. L., Weigand, S. D., Murray, M. E., Tosakulwong, N., Liesinger, A. M., … Dickson, D. W. (2014). TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathologica, 127(6), 811–824. doi:10.1007/s00401-014-1269-z
  • Kabashi, E., Valdmanis, P. N., Dion, P., Spiegelman, D., McConkey, B. J., Vande Velde, C., … Rouleau, G. A. (2008). TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genetics, 40(5), 572–574. doi:10.1038/ng.132 ng.132 [pii]
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22(12), 2577–2637. doi:10.1002/bip.360221211
  • Kathuria, S. V., Chan, Y. H., Nobrega, R. P., Özen, A., & Matthews, C. R. (2016). Clusters of isoleucine, leucine, and valine side chains define cores of stability in high-energy states of globular proteins: Sequence determinants of structure and stability. Protein Science, 25(3), 662–675. doi:10.1002/pro.2860
  • Kiernan, M. C., Vucic, S., Cheah, B. C., Turner, M. R., Eisen, A., Hardiman, O., … Zoing, M. C. (2011). Amyotrophic lateral sclerosis. The Lancet, 377(9769), 942–955. doi:10.1016/S0140-6736(10)61156-7 S0140-6736(10)61156-7 [pii]
  • Kumar, V., Islam, A., Hassan, M. I., & Ahmad, F. (2016). Delineating the relationship between amyotrophic lateral sclerosis and frontotemporal dementia: Sequence and structure-based predictions. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1862(9), 1742–1754. doi:10.1016/j.bbadis.2016.06.011 S0925-4439(16)30153-3 [pii]
  • Kumar, V., Islam, A., Hassan, M. I., & Ahmad, F. (2016). Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. European Journal of Medicinal Chemistry, 121, 903–917. doi:10.1016/j.ejmech.2016.06.017 S0223-5234(16)30495-0 [pii]
  • Kuo, P. H., Doudeva, L. G., Wang, Y. T., Shen, C. K., & Yuan, H. S. (2009). Structural insights into TDP-43 in nucleic-acid binding and domain interactions. Nucleic Acids Research, 37(6), 1799–1808. doi:10.1093/nar/gkp013 gkp013 [pii]
  • Kuo, P. H., Chiang, C. H., Wang, Y. T., Doudeva, L. G., & Yuan, H. S. (2014). The crystal structure of TDP-43 RRM1-DNA complex reveals the specific recognition for UG- and TG-rich nucleic acids. Nucleic Acids Research, 42(7), 4712–4722. doi:10.1093/nar/gkt1407 gkt1407 [pii]
  • Lei, H., & Duan, Y. (2008). Protein folding and unfolding by all-atom molecular dynamics simulations. Methods in Molecular Biology, 443, 277–295. doi:10.1007/978-1-59745-177-2_15
  • Leigh, P. N., Whitwell, H., Garofalo, O., Buller, J., Swash, M., Martin, J. E., … Anderton, B. H. (1991). Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Morphology, distribution, and specificity. Brain, 114(2), 775-788.10.1093/brain/114.2.775
  • Ling, S. C., Polymenidou, M., & Cleveland, D. W. (2013). Converging mechanisms in ALS and FTD: Disrupted RNA and protein homeostasis. Neuron, 79(3), 416–438. doi:10.1016/j.neuron.2013.07.033 S0896-6273(13)00657-0 [pii]
  • Lukavsky, P. J., Daujotyte, D., Tollervey, J. R., Ule, J., Stuani, C., Buratti, E., & Allain, F. H. (2013). Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nature Structural & Molecular Biology, 20(12), 1443–1449. doi:10.1038/nsmb.2698 nsmb.2698 [pii]
  • Mackness, B. C., Tran, M. T., McClain, S. P., Matthews, C. R., & Zitzewitz, J. A. (2014). Folding of the RNA recognition Motif (RRM) domains of the amyotrophic lateral sclerosis (ALS)-linked protein TDP-43 reveals an intermediate state. Journal of Biological Chemistry, 289(12), 8264–8276. doi:10.1074/jbc.M113.542779 M113.542779 [pii]
  • Maisuradze, G. G., Liwo, A., & Scheraga, H. A. (2010). Relation between free energy landscapes of proteins and dynamics. Journal of Chemical Theory and Computation, 6(2), 583–595. doi:10.1021/ct9005745
  • Maris, C., Dominguez, C., & Allain, F. H. (2005). The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS Journal, 272(9), 2118–2131. doi:10.1111/j.1742-4658.2005.04653.x EJB4653 [pii]
  • McGibbon, R. T., Beauchamp, K. A., Harrigan, M. P., Klein, C., Swails, J. M., Hernandez, C. X., … Pande, V. S. (2015). MDTraj: A modern open library for the analysis of molecular dynamics trajectories. Biophysical Journal, 109(8), 1528–1532. doi:10.1016/j.bpj.2015.08.015 S0006-3495(15)00826-7 [pii]
  • Mompeán, M., Romano, V., Pantoja-Uceda, D., Stuani, C., Baralle, F. E., Buratti, E., & Laurents, D. V. (2016). The TDP-43 N-terminal domain structure at high resolution. The FEBS Journal, 283(7), 1242–1260. doi:10.1111/febs.13651
  • Neumann, M., Sampathu, D. M., Kwong, L. K., Truax, A. C., Micsenyi, M. C., Chou, T. T., & Lee, V. M. (2006). Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 314(5796), 130–133. doi:10.1126/science.1134108 314/5796/130 [pii]
  • Nonaka, T., & Hasegawa, M. (2017). TDP-43 Prions. Cold Spring Harbor Perspectives in Medicine. doi:10.1101/cshperspect.a024463 a024463 [pii] cshperspect.a024463 [pii]
  • Nonaka, T., Kametani, F., Arai, T., Akiyama, H., & Hasegawa, M. (2009). Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Human Molecular Genetics, 18(18), 3353–3364. doi:10.1093/hmg/ddp275 ddp275 [pii]
  • Petersen, B., Petersen, T. N., Andersen, P., Nielsen, M., & Lundegaard, C. (2009). A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Structural Biology, 9, 51. doi:10.1186/1472-6807-9-51 1472-6807-9-51 [pii]
  • Polymenidou, M., & Cleveland, D. W. (2011). The seeds of neurodegeneration: Prion-like spreading in ALS. Cell, 147(3), 498–508. doi:10.1016/j.cell.2011.10.011 S0092-8674(11)01209-8 [pii]
  • Polymenidou, M., & Cleveland, D. W. (2017). Biological spectrum of amyotrophic lateral sclerosis Prions. Cold Spring Harbor Perspectives in Medicine, 7. doi:10.1101/cshperspect.a024133 a024133 [pii] cshperspect.a024133 [pii]
  • Polymenidou, M., Lagier-Tourenne, C., Hutt, K. R., Huelga, S. C., Moran, J., Liang, T. Y., … Cleveland, D. W. (2011). Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nature Neuroscience, 14(4), 459–468. doi:10.1038/nn.2779 nn.2779 [pii]
  • Prakash, A., Idrees, D., Haque, M. A., Islam, A., Ahmad, F., & Hassan, M. I. (2017). GdmCl-induced unfolding studies of human carbonic anhydrase IX: A combined spectroscopic and MD simulation approach. Journal of Biomolecular Structure and Dynamics, 35(6), 1295–1306. doi:10.1080/07391102.2016.1179596
  • Prakash, A., Kumar, V., Pandey, P., Bharti, D. R., Vishwakarma, P., Singh, R., … Lynn, A. M. (2017). Solvent sensitivity of protein aggregation in Cu, Zn superoxide dismutase: A molecular dynamics simulation study. J Biomol Struct Dyn, 1-39. doi:10.1080/07391102.2017.1364670
  • Pronk, S., Pouya, I., Lundborg, M., Rotskoff, G., Wesén, B., Kasson, P. M., & Lindahl, E. (2015). Molecular simulation workflows as parallel algorithms: The execution engine of copernicus, a distributed high-performance computing platform. Journal of Chemical Theory and Computation, 11(6), 2600–2608. doi:10.1021/acs.jctc.5b00234
  • Qin, H., Lim, L. Z., Wei, Y., & Song, J. (2014). TDP-43 N terminus encodes a novel ubiquitin-like fold and its unfolded form in equilibrium that can be shifted by binding to ssDNA. Proceedings of the National Academy of Sciences, 111(52), 18619–18624. doi:10.1073/pnas.1413994112 1413994112 [pii]
  • Robberecht, W., & Philips, T. (2013). The changing scene of amyotrophic lateral sclerosis. Nature Reviews Neuroscience, 14(4), 248–264. doi:10.1038/nrn3430 nrn3430 [pii]
  • Shodai, A., Morimura, T., Ido, A., Uchida, T., Ayaki, T., Takahashi, R., … Urushitani, M. (2013). Aberrant assembly of RNA recognition motif 1 links to pathogenic conversion of TAR DNA-binding protein of 43 kDa (TDP-43). Journal of Biological Chemistry, 288(21), 14886–14905. doi:10.1074/jbc.M113.451849 M113.451849 [pii]
  • Smethurst, P., Newcombe, J., Troakes, C., Simone, R., Chen, Y. R., Patani, R., & Sidle, K. (2016). In vitro prion-like behaviour of TDP-43 in ALS. Neurobiology of Disease, 96, 236–247. doi:10.1016/j.nbd.2016.08.007 S0969-9961(16)30195-4 [pii]
  • Tandan, R., & Bradley, W. G. (1985). Amyotrophic lateral sclerosis: Part 1. Clinical features, pathology, and ethical issues in management. Annals of Neurology, 18(3), 271–280. doi:10.1002/ana.410180302
  • Wan, H., Hu, J. P., Tian, X. H., & Chang, S. (2013). Molecular dynamics simulations of wild type and mutants of human complement receptor 2 complexed with C3d. Physical Chemistry Chemical Physics, 15(4), 1241–1251. doi:10.1039/c2cp41388d
  • Wang, Y. T., Kuo, P. H., Chiang, C. H., Liang, J. R., Chen, Y. R., Wang, S., … Yuan, H. S. (2013). The truncated C-terminal RNA recognition motif of TDP-43 protein plays a key role in forming proteinaceous aggregates. Journal of Biological Chemistry, 288(13), 9049–9057. doi:10.1074/jbc.M112.438564 M112.438564 [pii]
  • Wei, Y., Lim, L., Wang, L., & Song, J. (2016). Inter-domain interactions of TDP-43 as decoded by NMR. Biochemical and Biophysical Research Communications, 473(2), 614–619. doi:10.1016/j.bbrc.2016.03.158 S0006-291X(16)30476-4 [pii]
  • Winton, M. J., Igaz, L. M., Wong, M. M., Kwong, L. K., Trojanowski, J. Q., & Lee, V. M. (2008). Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. Journal of Biological Chemistry, 283(19), 13302–13309. doi:10.1074/jbc.M800342200 M800342200 [pii]
  • Wu, Y., Vadrevu, R., Kathuria, S., Yang, X., & Matthews, C. R. (2007). A tightly packed hydrophobic cluster directs the formation of an off-pathway sub-millisecond folding intermediate in the alpha subunit of tryptophan synthase, a TIM barrel protein. Journal of Molecular Biology, 366(5), 1624–1638. doi:10.1016/j.jmb.2006.12.005 S0022-2836(06)01664-0 [pii]
  • Yang, C., Tan, W., Whittle, C., Qiu, L., Cao, L., Akbarian, S., & Xu, Z. (2010). The C-terminal TDP-43 fragments have a high aggregation propensity and harm neurons by a dominant-negative mechanism. PLoS ONE, 5(12), e15878. doi:10.1371/journal.pone.0015878
  • Zhang, Y. J., Xu, Y. F., Cook, C., Gendron, T. F., Roettges, P., Link, C. D., … Petrucelli, L. (2009). Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proceedings of the National Academy of Sciences, 106(18), 7607–7612. doi:10.1073/pnas.0900688106 0900688106 [pii]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.