433
Views
27
CrossRef citations to date
0
Altmetric
Research Articles

In silico screening of phytopolyphenolics for the identification of bioactive compounds as novel protease inhibitors effective against SARS-CoV-2

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 10437-10453 | Received 18 Oct 2020, Accepted 11 Jun 2021, Published online: 28 Jun 2021
 

Abstract

Due to the unavailability specific drugs or vaccines (FDA approved) that can cure COVID-19, the development of potent antiviral drug candidates/therapeutic molecules against COVID-19 is urgently required. This study was aimed at in silico screening and study of polyphenolic phytochemical compounds in a rational way by virtual screening, molecular docking and molecular dynamics studies against SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro) enzymes. The objective of the study was to identify plant-derived polyphenolic compounds and/or flavonoid molecules as possible antiviral agents with protease inhibitory potential against SARS-CoV-2. In this study, we report plant-derived polyphenolic compounds (including flavonoids) as novel protease inhibitors against SARS-CoV-2. From virtual docking and molecular docking study, 31 polyphenolic compounds were identified as active antiviral molecules possessing well-defined binding affinity with acceptable ADMET, toxicity and lead-like or drug-like properties. Six polyphenolic compounds, namely, enterodiol, taxifolin, eriodictyol, leucopelargonidin, morin and myricetin were found to exhibit remarkable binding affinities against the proteases with taxifolin and morin exhibiting the highest binding affinity toward Mpro and PLpro respectively. Molecular dynamics simulation studies of these compounds in complex with the proteases showed that the binding of the compounds is characterized by structural perturbations of the proteases suggesting their antiviral activities. These compounds can therefore be investigated further by in vivo and in vitro techniques to assess their potential efficacy against SARS-CoV-2 and thus serve as the starting point for the development of potent antiviral agents against the deadly COVID-19.

Communicated by Ramaswamy H. Sarma

Disclosure statement

Authors declare that there is no potential conflict of interest.

Authors’ contribution

M. Rudrapal: Conceptualization, Methodology, Original Draft Preparation, Reviewing, Editing and Final Proof Reading; A. R. Issahaku: Methodology, Analysis and Final Draft Preparation; C. Agoni: Methodology and Data curation; A. R. Bendale: Visualization, Investigation; A. Nagar: Analysis and Validation; M. E. S. Soliman: Methodology and Analysis; D. Lokwani: Software and Validation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.