433
Views
27
CrossRef citations to date
0
Altmetric
Research Articles

In silico screening of phytopolyphenolics for the identification of bioactive compounds as novel protease inhibitors effective against SARS-CoV-2

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 10437-10453 | Received 18 Oct 2020, Accepted 11 Jun 2021, Published online: 28 Jun 2021

References

  • Barros, R. O., Junior, F. L. C. C., Pereira, W. S., Oliveira, N. M. N., & Ramos, R. M. (2020). Interaction of drug candidates with various SARS-CoV-2 receptors: An in silico study to combat COVID-19. Journal of Proteome Research, 19(11), 4567–4575. https://doi.org/10.1021/acs.jproteome.0c00327
  • Besednova, N. N., Andryukov, B. G., Zaporozhets, T. S., Kryzhanovsky, S. P., Fedyanina, L. N., Kuznetsova, T. A., Zvyagintseva, T. N., & Shchelkanov, M. Y. (2021). Antiviral effects of polyphenols from marine algae. Biomedicines, 9(2), 200. https://doi.org/10.3390/biomedicines9020200
  • Caly, L., Druce, J. D., Catton, M. G., Jans, D. A., & Wagstaff, K. M. (2020). The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, 178, 104787. https://doi.org/10.1016/j.antiviral.2020.104787
  • Cherian, S. S., Agrawal, M., Basu, A., Abraham, P., Gangakhedkar, R. R., & Bhargava, B. (2020). Perspectives for repurposing drugs for the coronavirus disease 2019. The Indian Journal of Medical Research, 151(2 & 3), 160–171. https://doi.org/10.4103/ijmr.IJMR_585_20
  • Elmezayen, A. D., Al-Obaidi, A., Şahin, A. T., & Yelekçi, K. (2021). Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure & Dynamics, 39(8), 2980–2992. https://doi.org/10.1080/071102.2020.1758791
  • Ford, N., Vitoria, M., Rangaraj, A., Norris, S. L., Calmy, A., & Doherty, M. (2020). Systematic review of the efficacy and safety of antiretroviral drugs against SARS, MERS or COVID-19: Initial assessment. Journal of the International AIDS Society, 23(4), e25489. https://doi.org/10.1002/jia2.25489
  • Guo, Y., Cao, Q., Hong, Z., Tan, Y., Chen, S., Jin, H., Tan, K., Wang, D., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Military Medical Research, 7(1), 11. https://doi.org/10.1186/s40779-020-00240-0
  • Gupta, S., Singh, A. K., Kushwaha, P. P., Prajapati, K. S., Shuaib, M., Senapati, S., & Kumar, S. (2020). Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1776157
  • Harapan, H., Itoh, N., Yufika, A., Winardi, W., Keam, S., Te, H., Megawati, D., Hayati, Z., Wagner, A. L., & Mudatsir, M. (2020). Coronavirus disease 2019 (COVID-19): A literature review. Journal of Infection and Public Health, 13(5), 667–673. https://doi.org/10.1016/j.jiph.2020.03.019
  • Holzinger, A., Dehmer, M., & Jurisica, I. (2014). Knowledge Discovery and interactive Data Mining in Bioinformatics - State-of-the-Art, future challenges and research directions. BMC Bioinformatics, 15(S6), I1. https://doi.org/10.1186/1471-2105-15-S6-I1
  • Ibrahim, M. A., Abdelrahman, A. H., Hussien, T. A., Badr, E. A., Mohamed, T. A., El-Seedi, H. R., Pare, P. W., Efferth, T., & Hegazy, M. E. F. (2020). In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Computers in Biology and Medicine, 126, 104046. https://doi.org/10.1016/j.compbiomed.2020
  • Joshi, T., Joshi, T., Sharma, P., Mathpal, S., Pundir, S., Bhatt, B., & Chandra, S. (2020). In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. European Review for Medical and Pharmacological Sciences, 24(8), 4529–4536. https://doi.org/10.26355/eurrev_202004_21036
  • Kalita, J., Chetia, D., & Rudrapal, M. (2020). Design, synthesis, antimalarial activity and docking study of 7-chloro-4-(2-(substituted benzylidene)hydrazineyl)quinolines. Medicinal Chemistry (Shariqah (United Arab Emirates), 16(7), 928–937. https://doi.org/10.2174/1573406415666190806154722
  • Kashyap, A., Chetia, D., & Rudrapal, M. (2016). Synthesis, antimalarial activity evaluation and drug-likeness study of some new quinoline-lawsone hybrids. Indian Journal of Pharmaceutical Sciences, 78(6), 892–911. https://doi.org/10.4172/pharmaceutical-sciences.1000186
  • Kouznetsova, V. L., Zhang, A., Tatineni, M., Miller, M. A., & Tsigelny, I. F. (2020). Potential COVID-19 papain-like protease PLpro inhibitors: Repurposing FDA-approved drugs. PeerJ, 8, e9965. https://doi.org/10.7717/peerj.9965
  • Larini, L., Mannella, R., & Leporini, D. (2007). Langevin stabilization of molecular-dynamics simulations of polymers by means of quasisymplectic algorithms. The Journal of Chemical Physics, 126(10), 104101. https://doi.org/10.1063/1.2464095
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Motiwale, M., Yadav, N. S., Kumar, S., Kushwaha, T., Choudhir, G., Sharma, S., & Singour, P. K. (2020). Finding potent inhibitors for COVID-19 main protease (Mpro): An in silico approach using SARS-CoV-3CL protease inhibitors for combating CORONA. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1829501
  • Narkhede, R. R., Cheke, R. S., Ambhore, J. P., & Shinde, S. D. (2020). The molecular docking study of potential drug candidates showing anti-COVID-19 activity by exploring of therapeutic targets of SARS-CoV-2. Eurasian Journal of Medicine and Oncology, 4, 185–195. https://doi.org/10.14744/ejmo.2020.31503
  • Ntie-Kang, F. (2013). An in silico evaluation of the ADMET profile of the StreptomeDB database. SpringerPlus, 2, 353. https://doi.org/10.1186/2193-1801-2-353
  • Osipiuk, J., Azizi, S.-A., Dvorkin, S., Endres, M., Jedrzejczak, R., Jones, K. A., Kang, S., Kathayat, R. S., Kim, Y., Lisnyak, V. G., Maki, S. L., Nicolaescu, V., Taylor, C. A., Tesar, C., Zhang, Y.-A., Zhou, Z., Randall, G., Michalska, K., Snyder, S. A., Dickinson, B. C., & Joachimiak, A. (2021). Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nature Communications, 12(1), 743. https://doi.org/10.1038/s41467-021-21060-3
  • Peele, K. A., Potla, C., Srihansa, T., Krupanidhi, S., Ayyagari, V. S., Babu, D. J., Indira, M., Reddy, A. R., & Venkateswarulu, T. C. (2020). Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Informatics in Medicine Unlocked, 19, 100345. https://doi.org/10.1016/j.imu.2020.100345
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pillaiyar, T., Meenakshisundaram, S., & Manickam, M. (2020). Recent discovery and development of inhibitors targeting coronaviruses. Drug Discovery Today, 25(4), 668–688. https://doi.org/10.1016/j.drudis.2020.01.015
  • Prajapat, M., Sarma, P., Shekhar, N., Avti, P., Sinha, S., Kaur, H., Kumar, S., Bhattacharyya, A., Kumar, H., Bansal, S., & Medhi, B. (2020). Drug targets for corona virus: A systematic review. Indian Journal of Pharmacology, 52(1), 56–65. https://doi.org/10.4103/ijp.IJP_115_20
  • Rolta, R., Yadav, R., Salaria, D., Trivedi, S., Imran, M., Sourirajan, A., Baumler, D. J., & Dev, K. (2020). In silico screening of hundred phytocompounds of ten medicinal plants as potential inhibitors of nucleocapsid phosphoprotein of COVID-19: An approach to prevent virus assembly. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1804457
  • Rubenstein, A. B., Blacklock, K., Nguyen, H., Case, D. A., & Khare, S. D. (2018). Systematic comparison of Amber and Rosetta energy functions for protein structure evaluation. Journal of Chemical Theory and Computation, 14(11), 6015–6025. https://doi.org/10.1021/acs.jctc.8b00303
  • Rudrapal, M., & Chetia, D. (2020). Virtual screening, molecular docking and QSAR studies in drug discovery and development programme. Journal of Drug Delivery and Therapeutics, 10(4), 225–233. https://doi.org/10.22270/jddt.v10i4.4218
  • Rudrapal, M., & Mullapudi, S. (2019). Design, Synthesis, drug-likeness studies and bio-evaluation of some novel chalconeimines. Pharmaceutical Chemistry Journal, 53(9), 814–821. https://doi.org/10.1007/s11094-019-02084-y
  • Rudrapal, M., Chetia, D., & Singh, V. (2017). Novel series of 1,2,4-trioxane derivatives as antimalarial agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 1159–1173. doi:10.1080/14756366.2017
  • Rudrapal, M., Khairnar, S. J., Borse, L. B., & Jadhav, A. J. (2020). Coronavirus disease-2019 (COVID-19): An updated review. Drug Research, 70(9), 389–400. https://doi.org/10.1055/a-1217-2397
  • Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: Current knowledge. Virology Journal, 16(1), 69. https://doi.org/10.1186/s12985-019-1182-0
  • Sepay, N., Sepay, N., Al Hoque, A., Mondal, R., Halder, U. C., & Muddassir, M. (2020). In silico fight against novel coronavirus by finding chromone derivatives as inhibitor of coronavirus main proteases enzyme. Structural Chemistry, 31(5), 1831–1840. https://doi.org/10.1007/s11224-020-01537-5
  • Shah, B., Modi, P., & Sagar, S. R. (2020). In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sciences, 252, 117652. https://doi.org/10.1016/j.lfs.2020.117652
  • Shree, P., Mishra, P., Selvaraj, C., Singh, S. K., Chaube, R., Garg, N., & Tripathi, Y. B. (2020). Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants–Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi)–a molecular docking study. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1810778
  • Singh, R., Gautam, A., Chandel, S., Ghosh, A., Dey, D., Roy, S., Ravichandiran, V., & Ghosh, D. (2020). Protease inhibitory effect of natural polyphenolic compounds on SARS-CoV-2: An in silico study. Molecules, 25(20), 4604. https://doi.org/10.3390/molecules25204604
  • Singhal, T. (2020). A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr, 87(4), 281–286. https://doi.org/10.1007/s12098-020-03263-6
  • Vardhan, S., & Sahoo, S. K. (2020). In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Computers in Biology and Medicine, 124, 103936. https://doi.org/10.1016/j.compbiomed.2020.103936
  • Vázquez-Calvo, Á., Jiménez de Oya, N., Martín-Acebes, M. A., Garcia-Moruno, E., & Saiz, J. C. (2017). Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses West Nile virus, Zika virus, and dengue virus. Frontiers in Microbiology, 8, 1314. https://doi.org/10.3389/fmicb.2017.01314
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Zakaryan, H., Arabyan, E., Oo, A., & Zandi, K. (2017). Flavonoids: Promising natural compounds against viral infections. Archives of Virology, 162(9), 2539–2551. https://doi.org/10.1007/s00705-017-3417-y
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412. https://doi.org/10.1126/science.abb3405

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.