450
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Discovery of potential inhibitors for stat3: ligand based 3D pharmacophore, virtual screening, molecular docking, dynamic studies and in vitro evaluation

ORCID Icon, , , &
Pages 11320-11338 | Received 19 Oct 2020, Accepted 15 Jul 2021, Published online: 31 Aug 2021
 

Abstract

A large analysis of the signal transducer and activator of transcription (STAT3) in cancer is currently being carried out. It regulates gene expression, which is required for normal cellular functions such as differentiation, cell growth, proliferation, survival, maturation, and immunity. A ligand-based pharmacophore model was created using 3 D QSAR pharmacophore generation methodology in Discovery studio 4.1 clients to imagine structurally diverse novel chemical entities as STAT3 inhibitors with improved efficacy. Chemical properties of 48 different derivatives were included in the training package. Hypo1 was chosen as the query model for screening 1,45,000 drug-like molecules from the SPECS database, with these molecules subjected to the Lipinski rule of 5, Verber's rule, and SMART filtration. After filtration, the molecule was examined further using molecular docking analysis on the active site of STAT3. The binding interaction(s) and pharmacophore mapping were used to select the 19 possible inhibitory molecules. These 19 hits were then tested for toxicity using the TOPKAT software. In MD simulations and MM-PBSA calculations, the tested compound specs 28 provided the best results, suggesting that this ligand has the ability to inhibit more effectively. Based in-silico finding 19 compounds are subjected to in vitro anticancer activity against MDA-MB-231 and MCF-7 cell lines. Based on results compounds specs 11 and specs 13 shows significant activity compared to other compounds and these compounds were subjected to apoptosis assay. The tested compounds induced morphologic changes were dose and time dependent by which all the tested compound exhibits stronger anti-tumor effects.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors confirm that this article content has no conflict of interest.

Ethics approval

Not applicable.

Additional information

Funding

Kaviarasan Lakshmanan expresses his gratitude to the All India Council for Technical Education (AICTE) New Delhi for providing financial assistance for this work through the AICTE-NDF scheme.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.