450
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Discovery of potential inhibitors for stat3: ligand based 3D pharmacophore, virtual screening, molecular docking, dynamic studies and in vitro evaluation

ORCID Icon, , , &
Pages 11320-11338 | Received 19 Oct 2020, Accepted 15 Jul 2021, Published online: 31 Aug 2021

Reference

  • Ailian, X., Zhengduo, Y., & Yicheng, S. (2014). Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers, 6, 926–957.
  • Darnell, J. E. (2000). STATs and gene regulation. Science, 277, 1630–1635.
  • Dube, D., Periwal, V., Kumar, M., Sharma, S., Singh, T. P., & Kaur, P. (2012). 3D-QSAR based pharmacophore modeling and virtual screening for identification of novel pteridine reductase inhibitors. Journal of Molecular Modeling, 18(5), 1701–1711. https://doi.org/10.1007/s00894-011-1187-0
  • Erickson, J. A., Jalaie, M., Robertson, D. H., Lewis, R. A., & Vieth, M. (2004). Lessons in molecular recognition: The effects of ligand and protein flexibility on molecular docking accuracy. Journal of Medicinal Chemistry, 47(1), 45–55. https://doi.org/10.1021/jm030209y
  • Fei, J., Zhou, L., Liu, T., & Tang, X.-Y. (2013). Pharmacophore modeling, virtual screening, and molecular docking studies for discovery of novel Akt2 inhibitors. International Journal of Medical Sciences, 10(3), 265–275. https://doi.org/10.7150/ijms.5344
  • Ferrara, P., Gohlke, H., Price, D. J., Klebe, G., & Brooks, C. L. (2004). Assessing scoring functions for protein-ligand interactions. Journal of Medicinal Chemistry, 47(12), 3032–3047. https://doi.org/10.1021/jm030489h
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Hai Feng, Z., & Raymond, L. (2014). STAT3 in cancer—Friend or foe. Cancers, 6, 1408–1440.
  • Ioannis, G., Nikolaos, N., & John, S. (2015). STAT3 signaling in cancer. Journal of Cancer Therapy, 6, 709–726.
  • Kasturi, B., & Haluk, R. (2016). Constitutive activation of STAT3 in breast cancer cells: A review. International Journal of Cancer, 138, 2570–2578.
  • Kaviarasan, L., Gowramma, B., & Manal, M. (2020). A brief review on dual target of PARP1 and STAT3 for cancer therapy: A novel perception. Current Enzyme Inhibition, 16, 1–20.
  • Kontoyianni, M., McClellan, L. M., & Sokol, G. S. (2004). Evaluation of docking performance: Comparative data on docking algorithms. Journal of Medicinal Chemistry, 47(3), 558–565. https://doi.org/10.1021/jm0302997
  • Krovat, E. M., Steind, T., & Langer, T. (2005). Recent advances in docking and scoring. Current Computer Aided-Drug Design, 1(1), 93–102. https://doi.org/10.2174/1573409052952314
  • Levy, D. E., & Darnell, J. (2002). Stats: Transcriptional control and biological impact. Nature Reviews. Molecular Cell Biology, 3(9), 651–662. https://doi.org/10.1038/nrm909
  • Michelle, A. B., Jiazhi, S., & Alan, C. (2003). Discovery of JSI-124 (Cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Research, 63, 1270–1279.
  • Mingli, H., Yimeng, W., & Guangcheng, G. (2018). microRNA-30d mediated breast cancer invasion, migration, and EMT by targeting KLF11 and activating STAT3 pathway. Journal of Cellular Biochemistry, 1–8.
  • Musyoka, T. M., Kanzi, A. M., Lobb, K. A., & Tastan Bishop, Ö. (2016). Structure based docking and molecular dynamic studies of plasmodial cysteine proteases against a South African natural compound and its analogs. Scientific Reports, 6(1), 1–12. https://doi.org/10.1038/srep23690
  • Nogara, P. A., Saraiva, R. d. A., Caeran Bueno, D., Lissner, L. J., Lenz Dalla Corte, C., Braga, M. M., Rosemberg, D. B., & Rocha, J. B. T. (2015). Virtual screening of acetylcholinesterase inhibitors using the Lipinski's rule of five and ZINC databank. BioMed Research International, 2015, 1–24. https://doi.org/10.1155/2015/870389
  • Perola, E., Walters, W. P., & Charifson, P. S. (2004). A detailed comparisonof current docking and scoring methods on systems of pharmaceutical relevance. Proteins: Structure, Function, and Bioinformatics, 56(2), 235–249. https://doi.org/10.1002/prot.20088
  • Ponnan, P., Gupta, S., Chopra, M., Tandon, R., Baghel, A. S., Gupta, G., Prasad, A. K., Rastogi, R. C., Bose, M., & Raj, H. G. (2013). 2D-QSAR, docking studies, and in-silico ADMET prediction of polyphenolic acetates as substrates for protein acetyltransferase function of glutamine synthetase of Mycobacterium tuberculosis. ISRN Structural Biology, 2013, 1–12. https://doi.org/10.1155/2013/373516
  • Pradeepkiran, J. A., Kumar, K. K., & Kumar, Y. N. (2016). Modeling, molecular dynamics, and docking assessment of transcription factor rho: A potential drug target in brucella melitensis 16M. Drug Design, Development and Therapy, 9, 1897–1912.
  • Rao, S. N., Head, M. S., Kulkarni, A., & LaLonde, J. M. (2007). Validation studies of the site-directed docking program LibDock. Journal of Chemical Information and Modeling, 47(6), 2159–2171. https://doi.org/10.1021/ci6004299
  • Sardar, S. S., Jagarlapudi, A. R. P., & Lakshmi, N. (2004). A review on PARP1 inhibitors: Pharmacophore modeling, virtual and biological screening studies to identify novel PARP1 inhibitors. Current Topics in Medicinal Chemistry, 14, 2020–2203.
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Schulz, G. T., & Stahl, M. (2003). Binding site characteristics in structure-based virtual screening: Evaluation of current docking tools. Journal of Molecular Modeling, 9(1), 47–57. https://doi.org/10.1007/s00894-002-0112-y
  • Shin, Y. C., Yen, H. C., & Pei Rong, L. (2019). Two novel SHP-1 agonists, SC - 43 and SC - 78, are more potent than regorafenib in suppressing the in vitro stemness of human colorectal cancer cells. Cell Death Discovery, 5, 25–36.
  • Singh, J., Kumar, M., Mansuri, R., Sahoo, G. C., & Deep, A. (2016). Inhibitor designing, virtual screening, and docking studies for methyltransferase: A potential target against dengue virus. Journal of Pharmacy & Bioallied Sciences, 8(3), 188–194. https://doi.org/10.4103/0975-7406.171682
  • Steffanie, L. F., Donald, S. B., & Christopher, J. M. (2016). Strategies and approaches of targeting STAT3 for cancer treatment. ACS Chemical Biology, 11, 308–318.
  • Swathi, K., Gowramma, B., & Manal, M. (2019). Synthesis, in-silico and in-vivo evaluation of novel 1, 3, 4-thiadiazole analogues as novel anticancer agents. Letters in Drug Design & Discovery, 16, 1–11.
  • Tomohiro, C. (2019). STAT3 inhibitors for cancer therapy – The rationale and remained problems. EC Cancer, 1–8.
  • Von Manstein, V., & Groner, B. (2017). Tumor cell resistance against targeted therapeutics: The density of cultured glioma tumor cells enhances STAT3 activity and offers protection against the tyrosine kinase inhibitor canertinib. MedChemComm, 8(1), 96–102. https://doi.org/10.1039/C6MD00463F
  • Zahid, K., Prachi, P., & Rajiv, P. G. (2013). Role of STAT3 in cancer metastasis and translational advances. BioMed Research International, 1–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.