336
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A network pharmacological approach to reveal the multidrug resistance reversal and associated mechanisms of acetogenins against colorectal cancer

, , &
Pages 13527-13546 | Received 24 Apr 2021, Accepted 01 Oct 2021, Published online: 20 Oct 2021
 

Abstract

Multidrug Resistance (MDR) in tumors is caused by the over-expression of ATP Binding Cassette transporter proteins such as Multidrug Resistance Protein 1 and Breast Cancer Resistance Protein 1. This in silico study focuses on identifying a MDR inhibitor among acetogenins (AGEs) of Annona muricata and also aims at predicting colorectal cancer (CRC) core targets of AGEs through a network pharmacological approach. Twenty-four AGEs were initially screened for their ADME properties. Molecular interaction studies were performed with the two proteins MRP1 and BCRP1. As the structure of MRP1 was not available, an inward-facing conformation of MRP1 was modeled. A Protein-protein interaction network was constructed for the correlating targets of CRC. KEGG pathway and Gene Ontology analysis were performed for the predicted CRC targets. We identified four lead AGEs: Muricatocin B, Annonacinone, Annonacin A and Annomuricin E having a higher binding affinity towards MDR proteins. MD simulation studies performed with the three lead AGEs and the MDR proteins showed that MRP1(DBD): Annomuricin E complex was stable throughout the simulation. Our analysis revealed ABCG2, ERBB2, STAT3, AR, SRC and ABCC1 as CRC targets of the lead molecules. The top 10 signaling pathways and functions of correlative CRC targets were also predicted. We conclude that the identified lead molecules might act as competitive inhibitors for reversing MDR in CRC. Additionally, network pharmacological studies established the correlative CRC targets and their mechanisms of action. Further experimental studies are needed to validate our findings.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.