336
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A network pharmacological approach to reveal the multidrug resistance reversal and associated mechanisms of acetogenins against colorectal cancer

, , &
Pages 13527-13546 | Received 24 Apr 2021, Accepted 01 Oct 2021, Published online: 20 Oct 2021

References

  • Agarwal, R., Kumar, B., Jayadev, M., Raghav, D., & Singh, A. (2016). CoReCG: A comprehensive database of genes associated with colon-rectal cancer. Database, 2016, 1-9. https://doi.org/10.1093/database/baw059
  • Agu, K. C., Okolie, N. P., Falodun, A., & Engel-Lutz, N. (2018). In vitro anticancer assessments of Annona muricata fractions and in vitro antioxidant profile of fractions and isolated acetogenin (15-acetyl guanacone). Journal of Cancer Research and Practice, 5(2), 53–66. https://doi.org/10.1016/j.jcrpr.2017.12.001
  • Akao, Y., Noguchi, S., Iio, A., Kojima, K., Takagi, T., & Naoe, T. (2011). Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells. Cancer Letters, 300(2), 197–204. https://doi.org/10.1016/j.canlet.2010.10.006
  • Alali, F. Q., Liu, X., & Mclaughlin, J. L. (2010). ChemInform abstract: Annonaceous acetogenins: Recent progress. ChemInform, 30(28). https://doi.org/10.1002/chin.199928305
  • Ayers, M. (2012). ChemSpider: The Free Chemical Database2012312chemspider: The Free Chemical DATABASE. url: Www.chemspider.com: Royal Society of Chemistry last Visited April 2012. GRATIS. Reference Reviews, 26(7), 45–46. https://doi.org/10.1108/09504121211271059
  • Babbi, G., Martelli, P. L., Profiti, G., Bovo, S., Savojardo, C., & Casadio, R. (2017). EDGAR: A database of DISEASE-GENE associations with annotated relationships among genes. BMC Genomics, 18(S5), 26–34. https://doi.org/10.1186/s12864-017-3911-3
  • Bakos, É., & Homolya, L. (2007). Portrait of multifaceted transporter, the multidrug resistance-associated protein 1 (MRP1/ABCC1). Pflugers Archiv: European Journal of Physiology, 453(5), 621–641. https://doi.org/10.1007/s00424-006-0160-8
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Bar-Zeev, M., Livney, Y. D., & Assaraf, Y. G. (2017). Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 31, 15–30. https://doi.org/10.1016/j.drup.2017.05.002
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. ACM/IEEE SC 2006 Conference (SC'06). Tampa, FL. https://doi.org/10.1109/sc.2006.54
  • Brouwer, N. P. M., Bos, A. C. R. K., Lemmens, V. E. P. P., Tanis, P. J., Hugen, N., Nagtegaal, I. D., de Wilt, J. H. W., & Verhoeven, R. H. A. (2018). An overview of 25 years of incidence, treatment and outcome of colorectal cancer patients. International Journal of Cancer, 143(11), 2758–2766. https://doi.org/10.1002/ijc.31785
  • Bukowski, K., Kciuk, M., & Kontek, R. (2020). Mechanisms of multidrug resistance in cancer chemotherapy. International Journal of Molecular Sciences, 21(9), 3233. https://doi.org/10.3390/ijms21093233\
  • Ceballos, M. P., Rigalli, J. P., Ceré, L. I., Semeniuk, M., Catania, V. A., & Ruiz, M. L. (2019). ABC transporters: Regulation and association with multidrug resistance in hepatocellular carcinoma and colorectal carcinoma. Current Medicinal Chemistry, 26(7), 1224–1250. https://doi.org/10.2174/0929867325666180105103637
  • Chau, I., & Cunningham, D. (2009). Treatment in advanced colorectal cancer: What, when and how? British Journal of Cancer, 100(11), 1704–1719. https://doi.org/10.1038/sj.bjc.6605061
  • Chen, Z., Chen, Y., Xu, M., Chen, L., Zhang, X., To, K. K. W., Zhao, H., Wang, F., Xia, Z., Chen, X., & Fu, L. (2016). Osimertinib (AZD9291) enhanced the efficacy of chemotherapeutic agents in ABCB1- and ABCG2-overexpressing cells in vitro, in vivo, and ex vivo. Molecular Cancer Therapeutics, 15(8), 1845–1858. https://doi.org/10.1158/1535-7163.mct-15-0939
  • Chen, Y., Chen, J-w., Xu, S-s., Wang, Y., Li, X., Cai, B-c., & Fan, N-b. (2012). Antitumor activity of annonaceous acetogenins in HepS and S180 xenografts bearing mice. Bioorganic & Medicinal Chemistry Letters, 22(8), 2717–2719. https://doi.org/10.1016/j.bmcl.2012.02.109
  • Choi, C. (2005). ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell International, 5(1), 30. https://doi.org/10.1186/1475-2867-5-30
  • Choi, Y., & Yu, A. (2014). ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Current Pharmaceutical Design, 20(5), 793–807. https://doi.org/10.2174/138161282005140214165212
  • Choudhary, M. I., Shaikh, M., Tul-Wahab, A., & Ur-Rahman, A. (2020). In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. PLoS One, 15(7), e0235030. https://doi.org/10.1371/journal.pone.0235030
  • Cole, S. P. (2014). Multidrug Resistance Protein 1 (MRP1, ABCC1), a “Multitasking” ATP-binding Cassette (ABC) transporter. The Journal of Biological Chemistry, 289(45), 30880–30888. https://doi.org/10.1074/jbc.r114.609248
  • Conrad, S., Kauffmann, H., Ito, K., Leslie, E. M., Deeley, R. G., Schrenk, D., & Cole, S. P. (2002). A naturally occurring mutation in MRP1 results in a selective decrease in organic anion transport and in Increased Doxorubicin resistance. Pharmacogenetics, 12(4), 321–330. https://doi.org/10.1097/00008571-200206000-00008
  • Coria-Téllez, A. V., Montalvo-Gónzalez, E., Yahia, E. M., & Obledo-Vázquez, E. N. (2018). Annona muricata: A comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arabian Journal of Chemistry, 11(5), 662–691. https://doi.org/10.1016/j.arabjc.2016.01.004
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • Daina, A., Michielin, O., & Zoete, V. (2019). Swisstargetprediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382
  • Dantzic, D., Noel, P., Merien, F., Liu, D.-X., Lu, J., Han, H., McKeage, M., & Li, Y. (2018). The effects of synthetically modified natural compounds on ABC transporters. Pharmaceutics, 10(3), 127. https://doi.org/10.3390/pharmaceutics10030127
  • Degli Esposti, M., Ghelli, A., Ratta, M., Cortes, D., & Estornell, E. (1994). Natural substances (acetogenins) from the family annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (complex I). Biochemical Journal, 301(1), 161–167. https://doi.org/10.1042/bj3010161
  • Dilipkumar, J., & Agliandeshwari, D. (2017). Preparation & evaluation of Annona muricata extract against cancer cells with modified release. PharmaTutor, 5(10), 63–106.
  • Diop, N. K., & Hrycyna, C. A. (2005). N-linked glycosylation of the human ABC transporter ABCG2 on asparagine 596 is not essential for expression, transport activity, or trafficking to the plasma membrane. Biochemistry, 44(14), 5420–5429. doi:10.1021/bi047985
  • Dizdaroglu, Y., Albay, C., Arslan, T., Ece, A., Turkoglu, E. A., Efe, A., Senturk, M., Supuran, C. T., & Ekinci, D. (2020). Design, synthesis and molecular modelling studies of some pyrazole derivatives as carbonic anhydrase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 289–297. https://doi.org/10.1080/14756366.2019.1695791
  • Ferreira, R. J., Bonito, C. A., Cordeiro, M. N., Ferreira, M. U., & Dos Santos, D. J. V. A. (2017). Structure-function relationships in ABCG2: Insights from molecular dynamics simulations and molecular docking studies. Scientific Reports, 7(1), 1–17. https://doi.org/10.1038/s41598-017-15452-z
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Gavamukulya, Y., Wamunyokoli, F., & El-Shemy, H. A. (2017). Annona muricata: Is the natural therapy to most disease conditions including cancer growing in our backyard? A systematic review of its research history and future prospects. Asian Pacific Journal of Tropical Medicine, 10(9), 835–848. https://doi.org/10.1016/j.apjtm.2017.08.009
  • Hamed, A. R., Abdel-Azim, N. S., Shams, K. A., & Hammouda, F. M. (2019). Targeting multidrug resistance in cancer by natural chemosensitizers. Bulletin of the National Research Centre, 43(1), 1–14. https://doi.org/10.1186/s42269-019-0043-8
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • He, S., Li, R., Kanwar, J. R., & Zhou, S. (2011). Structural and functional properties of human multidrug resistance protein 1 (MRP1/ABCC1). Current Medicinal Chemistry, 18(3), 439–481. https://doi.org/10.2174/092986711794839197
  • Hipfner, D. R., Deeley, R. G., & Cole, S. P. (1999). Structural, mechanistic and clinical aspects of MRP1. Biochimica Et Biophysica Acta (BBA) - Biomembranes, 1461(2), 359–376. https://doi.org/10.1016/S0005-2736(99)00168-6
  • Horsey, A., Cox, M., Sarwat, S., & Kerr, I. (2016). The multidrug transporter ABCG2: Still more questions than answers. Biochemical Society Transactions, 44(3), 824–830. https://doi.org/10.1042/bst20160014
  • Hu, T., Li, Z., Gao, C., & Cho, C. H. (2016). Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World Journal of Gastroenterology, 22(30), 6876–6889. https://doi.org/10.3748/wjg.v22.i30.6876
  • Huang, R., Wang, G., Song, Y., Wang, F., Zhu, B., Tang, Q., Liu, Z., Chen, Y., Zhang, Q., Muhammad, S., & Wang, X. (2015). Polymorphic cag repeat and protein expression of androgen receptor gene in colorectal cancer. Molecular Cancer Therapeutics, 14(4), 1066–1074. https://doi.org/10.1158/1535-7163.MCT-14-0620
  • Jackson, S. M., Manolaridis, I., Kowal, J., Zechner, M., Taylor, N. M. I., Bause, M., Bauer, S., Bartholomaeus, R., Bernhardt, G., Koenig, B., Buschauer, A., Stahlberg, H., Altmann, K.-H., & Locher, K. P. (2018). Structural basis of small-molecule inhibition of human multidrug transporter abcg2. Nature Structural & Molecular Biology, 25(4), 333–340. https://doi.org/10.1038/s41594-018-0049-1
  • Jaramillo, A. C., Al Saig, F., Cloos, J., Jansen, G., & Peters, G. J. (2018). How to overcome ATP-binding cassette drug EFFLUX Transporter-mediated drug resistance? Cancer Drug Resistance, 1(1), 6–29. https://doi.org/10.20517/cdr.2018.02
  • Jeevitha Priya, M., Vidyalakshmi, S., & Rajeswari, M. (2020). Study on reversal OF ABCB1 Mediated multidrug resistance in colon cancer by acetogenins: An in-silico approach. Journal of Biomolecular Structure and Dynamics, 38, 1–12. https://doi.org/10.1080/07391102.2020.1855249
  • Jin, W. (2020). Regulation of src family kinases during colorectal cancer development and its clinical implications. Cancers, 12(5), 1339. https://doi.org/10.3390/cancers12051339
  • Johnson, Z. L., & Chen, J. (2017). Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell, 168(6), 1075–1085.e9. https://doi.org/10.1016/j.cell.2017.01.041
  • Joyce, H., McCann, A., Clynes, M., & Larkin, A. (2015). Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism. Expert Opinion on Drug Metabolism & Toxicology, 11(5), 795–809. https://doi.org/10.1517/17425255.2015.1028356
  • Krauze, A., Grinberga, S., Krasnova, L., Adlere, I., Sokolova, E., Domracheva, I., Shestakova, I., Andzans, Z., & Duburs, G. (2014). Thieno[2,3-b]pyridines-a new class of multidrug resistance (MDR) modulators. Bioorganic & Medicinal Chemistry, 22(21), 5860–5870. https://doi.org/10.1016/j.bmc.2014.09.023
  • Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S. L., Jagodnik, K. M., Lachmann, A., McDermott, M. G., Monteiro, C. D., Gundersen, G. W., & Ma'ayan, A. (2016). Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research, 44(W1), W90–W97. https://doi.org/10.1093/nar/gkw377
  • Kunická, T., & Souček, P. (2014). Importance of ABCC1 for cancer therapy and prognosis. Drug Metabolism Reviews, 46(3), 325–342. https://doi.org/10.3109/03602532.2014.901348
  • Lai, Y. (2013). Breast cancer resistance protein (BCRP)/ABCG2. Transporters in Drug Discovery and Development, 4, 295–326. https://doi.org/10.1533/9781908818287.295
  • Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., Chen, X., Taipale, J., Hughes, T. R., & Weirauch, M. T. (2018). The human transcription factors. Cell, 172(4), 650–665. https://doi.org/10.1016/j.cell.2018.01.029
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science : A Publication of the Protein Society, 27(1), 129–134. https://doi.org/10.1002/pro.3289
  • Laskowski, R. A., Macarthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lassmann, S., Schuster, I., Walch, A., Gobel, H., Jutting, U., Makowiec, F., Hopt, U., & Werner, M. (2006). Stat3 mRNA and protein expression in colorectal cancer: Effects on stat3-inducible targets linked to cell survival and proliferation. Journal of Clinical Pathology, 60(2), 173–179. https://doi.org/10.1136/jcp.2005.035113
  • Leary, M., Heerboth, S., Lapinska, K., & Sarkar, S. (2018). Sensitization of drug resistant cancer cells: A matter of combination therapy. Cancers, 10(12), 483. https://doi.org/10.3390/cancers10120483
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins, 79(10), 2794–2812. https://doi.org/10.1002/prot.23106
  • Liaw, C.-C., Wu, T.-Y., Chang, F.-R., & Wu, Y.-C. (2010). Historic perspectives on annonaceous acetogenins from the chemical bench to preclinical trials. Planta Medica, 76(13), 1390–1404. https://doi.org/10.1055/s-0030-1250006
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23(1-3), 3–25. 1. Advanced Drug Delivery Reviews, 46(1-3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
  • Liu, F. (2009). Mechanisms of chemotherapeutic drug resistance in cancer therapy—A quick review. Taiwanese Journal of Obstetrics & Gynecology, 48(3), 239–244. https://doi.org/10.1016/S1028-4559(09)60296-5
  • Liu, H. G., Pan, Y. F., You, J., Wang, O. C., Huang, K. T., & Zhang, X. H. (2010). Expression of ABCG2 and its significance in colorectal cancer. Asian Pacific Journal of Cancer Prevention : APJCP, 11(4), 845–848.
  • Lu, J. F., Pokharel, D., & Bebawy, M. (2015). MRP1 and its role in anticancer drug resistance. Drug Metabolism Reviews, 47(4), 406–419. https://doi.org/10.3109/03602532.2015.1105253
  • Mao, Q. (2008). BCRP/ABCG2 in the placenta: Expression, function and regulation. Pharmaceutical Research, 25(6), 1244–1255. https://doi.org/10.1007/s11095-008-9537-z
  • Mendez, D., Gaulton, A., Bento, A. P., Chambers, J., De Veij, M., Félix, E., Magariños, M. P., Mosquera, J. F., Mutowo, P., Nowotka, M., Gordillo-Marañón, M., Hunter, F., Junco, L., Mugumbate, G., Rodriguez-Lopez, M., Atkinson, F., Bosc, N., Radoux, C. J., Segura-Cabrera, A., Hersey, A., & Leach, A. R. (2019). ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Research, 47(D1), D930–D940. https://doi.org/10.1093/nar/gky1075
  • Mitomo, H., Kato, R., Ito, A., Kasamatsu, S., Ikegami, Y., Kii, I., Kudo, A., Kobatake, E., Sumino, Y., & Ishikawa, T. (2003). A functional study on polymorphism of the ATP-binding cassette transporter ABCG2: Critical role of arginine-482 in methotrexate transport. The Biochemical Journal, 373(Pt 3), 767–774. https://doi.org/10.1042/bj20030150
  • Moghadamtousi, S., Fadaeinasab, M., Nikzad, S., Mohan, G., Ali, H., & Kadir, H. (2015). Annona muricata (Annonaceae): A review of its TRADITIONAL Uses, isolated acetogenins and biological activities. International Journal of Molecular Sciences, 16(7), 15625–15658. https://doi.org/10.3390/ijms160715625
  • Mohammad, I. S., He, W., & Yin, L. (2018). Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 100, 335–348. https://doi.org/10.1016/j.biopha.2018.02.038
  • Mulia, K., Krisanti, E., Maulana, T., & Dianursanti, D. (2015). Selective polarity-guided extraction and purification of acetogenins in Annona muricata L. Leaves. International Journal of Technology, 6(7), 1221. https://doi.org/10.14716/ijtech.v6i7.1983
  • Nakanishi, T., & Ross, D. D. (2012). Breast cancer resistance PROTEIN (BCRP/ABCG2): Its role in multidrug resistance and regulation of its gene expression. Chinese Journal of Cancer, 31(2), 73–99. https://doi.org/10.5732/cjc.011.10320
  • Ni, Z., Bikadi, Z., Rosenberg, M. F., & Mao, Q. (2010). Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Current Drug Metabolism, 11(7), 603–617. https://doi.org/10.2174/138920010792927325
  • Oberlies, N. H., Jones, J. L., Corbett, T. H., Fotopoulos, S. S., & Mclaughlin, J. L. (1995). Tumor cell growth inhibition by several Annonaceous acetogenins in an in vitro disk diffusion assay. Cancer Letters, 96(1), 55–62. https://doi.org/10.1016/0304-3835(95)92759-7
  • Ozben, T. (2006). Mechanisms and strategies to overcome multiple drug resistance in cancer. FEBS Letters, 580(12), 2903–2909. https://doi.org/10.1016/j.febslet.2006.02.020
  • Pan, C., Weng, J., & Wang, W. (2016). ATP hydrolysis Induced conformational changes in the vitamin B12 transporter BtuCD revealed by MD simulations. PLOS One, 11(11), e0166980. https://doi.org/10.1371/journal.pone.0166980
  • Pan, Q., Zhou, R., Su, M., & Li, R. (2019). The effects of plumbagin on pancreatic cancer: A mechanistic network pharmacology approach. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 4648–4654. https://doi.org/10.12659/msm.917240
  • Pathan, M., Keerthikumar, S., Ang, C.-S., Gangoda, L., Quek, C. Y. J., Williamson, N. A., Mouradov, D., Sieber, O. M., Simpson, R. J., Salim, A., Bacic, A., Hill, A. F., Stroud, D. A., Ryan, M. T., Agbinya, J. I., Mariadason, J. M., Burgess, A. W., & Mathivanan, S. (2015). FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics, 15(15), 2597–2601. https://doi.org/10.1002/pmic.201400515
  • Patil, P. S., Saklani, A., Gambhire, P., Mehta, S., Engineer, R., De’Souza, A., Chopra, S., & Bal, M. (2017). Colorectal cancer in India: An audit from a tertiary center in a low prevalence area. Indian Journal of Surgical Oncology, 8(4), 484–490. https://doi.org/10.1007/s13193-017-0655-0
  • Pectasides, E., & Bass, A. J. (2015). ERBB2 emerges as a new target for colorectal cancer. Cancer Discovery, 5(8), 799–801. https://doi.org/10.1158/2159-8290.cd-15-0730
  • Pérez-Vargas, J., Biondani, P., Maggi, C., Gariboldi, M., Gloghini, A., Inno, A., Volpi, C., Gualeni, A., di Bartolomeo, M., de Braud, F., Castano, A., Bossi, I., & Pietrantonio, F. (2013). Role of cMET in the development and progression of colorectal cancer. International Journal of Molecular Sciences, 14(9), 18056–18077. https://doi.org/10.3390/ijms140918056
  • Piñero, J., Ramírez-Anguita, J. M., Saüch-Pitarch, J., Ronzano, F., Centeno, E., Sanz, F., & Furlong, L. I. (2019). The DisGeNET knowledge platform for DISEASE genomics: 2019 update. Nucleic Acids Research, 48(D1), 845–855. https://doi.org/10.1093/nar/gkz1021
  • Pinkett, H. W., Lee, A. T., Lum, P., Locher, K. P., & Rees, D. C. (2007). An inward-facing conformation of a putative metal-chelate-type ABC transporter. Science (New York, N.Y.), 315(5810), 373–377. https://doi.org/10.1126/science.1133488
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). PkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Qazi, A. K., Siddiqui, J. A., Jahan, R., Chaudhary, S., Walker, L. A., Sayed, Z., Jones, D. T., Batra, S. K., & Macha, M. A. (2018). Emerging therapeutic potential of graviola and its constituents in cancers. Carcinogenesis, 39(4), 522–533. https://doi.org/10.1093/carcin/bgy024
  • Rady, I., Bloch, M. B., Chamcheu, R.-C N., Banang Mbeumi, S., Anwar, M. R., Mohamed, H., Babatunde, A. S., Kuiate, J.-R., Noubissi, F. K., El Sayed, K. A., Whitfield, G. K., & Chamcheu, J. C. (2018). Anticancer properties of graviola (Annona muricata): A comprehensive mechanistic review. Oxidative Medicine and Cellular Longevity, 2018, 1–39. https://doi.org/10.1155/2018/1826170
  • Rady, I., Siddiqui, I. A., Rady, M., & Mukhtar, H. (2017). Melittin, a MAJOR peptide component of bee venom, and ITS Conjugates in cancer therapy. Cancer Letters, 402, 16–31. https://doi.org/10.1016/j.canlet.2017.05.010
  • Ramaen, O., Leulliot, N., Sizun, C., Ulryck, N., Pamlard, O., Lallemand, J.-Y., Tilbeurgh, H. v., & Jacquet, E. (2006). Structure of the human multidrug resistance protein 1 nucleotide binding domain 1 bound to Mg2+/ATP reveals a non-productive catalytic site. Journal of Molecular Biology, 359(4), 940–949. https://doi.org/10.1016/j.jmb.2006.04.005
  • Rao, S., Haleshappa, R., Garg, S., Kuntegowdanahalli, C., Kanakasetty, G., & Dasappa, L. (2017). Is colorectal cancer in young (40 Years): Experience from a regional care center. Indian Journal of Medical and Paediatric Oncology, 38(04), 466–470. https://doi.org/10.4103/ijmpo.ijmpo_187_16
  • Robey, R. W., Lin, B., Qiu, J., Chan, L. L., & Bates, S. E. (2011). Rapid detection of ABC Transporter interaction: Potential utility in pharmacology. Journal of Pharmacological and Toxicological Methods, 63(3), 217–222. https://doi.org/10.1016/j.vascn.2010.11.003
  • Robey, R. W., Pluchino, K. M., Hall, M. D., Fojo, A. T., Bates, S. E., & Gottesman, M. M. (2018). Revisiting the role of ABC transporters in multidrug-resistant cancer. Nature Reviews. Cancer, 18(7), 452–464. https://doi.org/10.1038/s41568-018-0005-8
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Schrödinger Release 2019-1. (2019a). Desmond molecular System.
  • Schrödinger Release 2019-1. (2019b). Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY. Maestro-Desmond Interoperability Tools.
  • Schrödinger Release 2019-1. (2019c). Glide.
  • Schrödinger Release 2019-1. (2019d). LigPrep.
  • Schrödinger Release 2019-1. (2019e). MASTERO.
  • Schrödinger Release 2019-1. (2019f). Prime.
  • Schrödinger Release 2019-1. (2019g). Protein preparation wizard.
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for Integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
  • Sharma, A. K., Srivastava, G. N., Roy, A., & Sharma, V. K. (2017). Toxim: A toxicity prediction tool for small molecules developed using machine learning and chemoinformatics approaches. Frontiers in Pharmacology, 8, 1–18. https://doi.org/10.3389/fphar.2017.00880
  • Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Cancer statistics, 2017. CA: A Cancer Journal for Clinicians, 67(1), 7–30. https://doi.org/10.3322/caac.21387
  • Sillars-Hardebol, A. H., Carvalho, B., de Wit, M., Postma, C., Delis-van Diemen, P. M., Mongera, S., Ylstra, B., van de Wiel, M. A., Meijer, G. A., & Fijneman, R. J. A. (2010). Identification of key genes for carcinogenic pathways associated with colorectal adenoma-to-carcinoma progression. Tumour Biology : The Journal of the International Society for Oncodevelopmental Biology and Medicine, 31(2), 89–96. https://doi.org/10.1007/s13277-009-0012-1
  • Spitzner, M., Roesler, B., Bielfeld, C., Emons, G., Gaedcke, J., Wolff, H. A., Rave-Fränk, M., Kramer, F., Beissbarth, T., Kitz, J., Wienands, J., Ghadimi, B. M., Ebner, R., Ried, T., & Grade, M. (2014). STAT3 inhibition sensitizes colorectal cancer to chemoradiotherapy in vitro and in vivo. International Journal of Cancer, 134(4), 997–1007. https://doi.org/10.1002/ijc.28429
  • Steller, E. J. A., Raats, D. A., Koster, J., Rutten, B., Govaert, K. M., Emmink, B. L., Snoeren, N., van Hooff, S. R., Holstege, F. C. P., Maas, C., Borel, R. I. H. M., & Kranenburg, O. (2013). PDGFRB promotes liver metastasis formation of mesenchymal-like colorectal tumor cells. Neoplasia (New York, N.Y.), 15(2), 204–IN30. https://doi.org/10.1593/neo.121726
  • Suzuki, H., & Sugiyama, Y. (1998). Excretion of GSSG and Glutathione Conjugates mediated by MRP1 and cMOAT/MRP2. Seminars in Liver Disease, 18(4), 359–376. https://doi.org/10.1055/s-2007-1007170
  • Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. v. (2019). String v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
  • Tamaki, A., Ierano, C., Szakacs, G., Robey, R. W., & Bates, S. E. (2011). The controversial role of ABC transporters in clinical oncology. Essays in Biochemistry, 50(1), 209–232. https://doi.org/10.1042/bse0500209
  • The UniProt Consortium. (2019). UniProt: A worldwide hub of protein knowledge. (2018). Nucleic Acids Research, 47(D1), 506–515. https://doi.org/10.1093/nar/gky1049
  • Wang, J.-Q., Wang, B., Lei, Z.-N., Teng, Q.-X., Li, J. Y., Zhang, W., Ji, N., Cai, C.-Y., Ma, L.-Y., Liu, H.-M., & Chen, Z.-S. (2019). Derivative of 5-cyano-6-phenylpyrimidin antagonizes ABCB1- and ABCG2-mediated multidrug resistance. European Journal of Pharmacology, 863, 172611. https://doi.org/10.1016/j.ejphar.2019.172611
  • Wang, H., Xi, Q., & Wu, G. (2016). Fatty acid synthase regulates invasion and metastasis of colorectal cancer via wnt signaling pathway. Cancer Medicine, 5(7), 1599–1606. https://doi.org/10.1002/cam4.711
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Wishart, D. S. (2006). Drugbank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34(90001), D668–D672. https://doi.org/10.1093/nar/gkj067
  • Wood, G. E., Hockings, H., Hilton, D. M., & Kermorgant, S. (2021). The role of met in chemotherapy resistance. Oncogene, 40(11), 1927–1941. https://doi.org/10.1038/s41388-020-01577-5
  • Xie, Y., Chen, Y., & Fang, J. (2020). Comprehensive review of targeted therapy for colorectal cancer. Signal Transduction and Targeted Therapy, 5(1), 1–30. https://doi.org/10.1038/s41392-020-0116-z
  • Ye, Q., Liu, K., Shen, Q., Li, Q., Hao, J., Han, F., & Jiang, R. (2019). Reversal of multidrug resistance in cancer by multi-functional flavonoids. Frontiers in Oncology, 9, 1-16. https://doi.org/10.3389/fonc.2019.00487
  • Zaretzki, J., Bergeron, C., Huang, T., Rydberg, P., Swamidass, S. J., & Breneman, C. M. (2013). RS-WebPredictor: A server for PREDICTING cyp-mediated sites of metabolism on DRUG-LIKE molecules. Bioinformatics (Oxford, England), 29(4), 497–498. https://doi.org/10.1093/bioinformatics/bts705
  • Zhang, Y., Hu, X., Miao, X., Zhu, K., Cui, S., Meng, Q., Sun, J., & Wang, T. (2016). MicroRNA-425-5p regulates chemoresistance in colorectal cancer cells via regulation of programmed cell death 10. Journal of Cellular and Molecular Medicine, 20(2), 360–369. https://doi.org/10.1111/jcmm.12742
  • Zloh, M., Kaatz, G. W., & Gibbons, S. (2004). Inhibitors of multidrug resistance (MDR) have affinity for MDR substrates. Bioorganic & Medicinal Chemistry Letters, 14(4), 881–885. https://doi.org/10.1016/j.bmcl.2003.12.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.