186
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Probing intermolecular interactions and binding stability of antimicrobial peptides with beta-lactamase of Klebsiella aerogenes by comparing FDA approved beta-lactam drugs: a docking and molecular dynamics approach

&
Pages 13641-13657 | Received 04 Jun 2021, Accepted 08 Oct 2021, Published online: 22 Oct 2021
 

Abstract

Hospital pathogens, including Klebsiella aerogenes are becoming increasingly common, with the rise of Beta-lactam-resistant strains, especially in isolates recovered from intensive care rooms. Beta-lactamases participate in both the antibacterial activity and the mediation of the antibiotic resistance of Beta-lactams. The rapid spread of broad-spectrum Beta-lactam antibiotic resistance in pathogenic bacteria has recently become a major global health problem. As a result, new drugs that specifically target Beta-lactamases are urgently needed, and this enzyme has been identified to resolve the problem of bacterial resistance. In previous work, we de-novo developed, synthesized, and studied the in-vitro and in-silico behavior of four novel broad spectrum antimicrobial peptides, namely PEP01 to PEP04. All four peptides had significant antibacterial action against K. aerogenes. The literature evidence strongly suggests that Beta-lactamases are extremely important for bacteria, including K. aerogenes, and hence are therapeutically important and possible targets. Therefore, in this study we incorporated molecular modeling, docking, and simulation studies of the above four AMPs against the Beta-lactamase protein of K. aerogenes. The docking findings were also compared to eight FDA approved Beta-lactam antibiotics. According to our findings, all four peptides have strong binding affinity and interactions with Beta-lactamases and PEP02 has the highest docking score. In MD simulations, the protein-peptide complexes were more stable at 50 ns. We found that the new AMP-PEP02 is the most efficient and suitable drug candidate for inactivating Beta-lactamase protein, and that it is an alternative to or complements existing antibiotics for managing Beta-lactamase related resistance mechanisms based on this computational conclusion.

Communicated by Ramaswamy H. Sarma

Acknowledgements

The authors acknowledge Dr. M. Jayakanthan, of Tamil Nadu Agricultural University, Coimbatore, for providing valuable suggestions. The authors are also thankful to Mr. R Raghu and Mr. D Vinod, of Schrodinger Bengaluru, for molecular dynamics studies and their continuous support in undertaking this research work.

Disclosure statement

Authors declare no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.