186
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Probing intermolecular interactions and binding stability of antimicrobial peptides with beta-lactamase of Klebsiella aerogenes by comparing FDA approved beta-lactam drugs: a docking and molecular dynamics approach

&
Pages 13641-13657 | Received 04 Jun 2021, Accepted 08 Oct 2021, Published online: 22 Oct 2021

References

  • Abraham, E. P., & Waley, S. G. (1979). 13-lactamases from Bacillus cereus. In J. M. T. Hamilton-Miller & J. T. Smith (Eds.), Beta-lactamases. Academic Press.
  • Ambler, R. P. (1980). The structure of β-lactamases. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 289(1036), 321–331.
  • Bassetti, M., Ginocchio, F., & Mikulska, M. (2011). New treatment options against gram-negative organisms. In the Annual Update in Intensive Care and Emergency Medicine 2011 (pp. 501–515). Springer.
  • Bassetti, M., Taramasso, L., Nicco, E., Molinari, M. P., Mussap, M., & Viscoli, C. (2011). Epidemiology, species distribution, antifungal susceptibility and outcome of nosocomial candidemia in a tertiary care hospital in Italy. PLoS One., 6(9), e24198. https://doi.org/10.1371/journal.pone.0024198
  • Bowers, K. J., Chow, E., Huafeng, X., Dror, R. O., Eastwood, M. P., Gregerson, B. A., Klepeis, J. L., Kolossváry, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J., Shan, Y., & Shaw, D. E. (2006, November). Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the ACM/IEEE Conference on Supercomputing (SC06) (pp. 11–17). ACM.
  • Bush, K., & Macielag, M. J. (2010). New β-lactam antibiotics and β-lactamase inhibitors. Expert Opinion on Therapeutic Patents, 20(10), 1277–1293.
  • Chuang, G. Y., Kozakov, D., Brenke, R., Comeau, S. R., & Vajda, S. (2008). DARS (Decoys As the Reference State) potentials for protein-protein docking. Biophysical Journal, 95(9), 4217–4227.
  • Connolly, A. K., & Waley, S. G. (1983). Characterization of the membrane beta-lactamase in Bacillus cereus 569/H/9. Biochemistry, 22(20), 4647–4651.
  • East, A. K., & Dyke, K. G. H. (1989). Cloning and sequence determination of six Staphylococcus aureus β-lactamases and their expression in Escherichia coli and Staphylococcus aureus. Microbiology, 135(4), 1001–1015. https://doi.org/10.1099/00221287-135-4-1001
  • Everest, P. (2007). The enterobacteria, 2nd edition. Gut, 56(9), 1331–1331. https://doi.org/10.1136/gut.2007.121509
  • Foster, T. J. (1983). Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiological Reviews, 47(3), 361–409. https://doi.org/10.1128/mr.47.3.361-409.1983
  • Gal-On, S., Arbatov, V., & Rowen, C. (2017). U.S. Patent No. 9,582,473. U.S. Patent and Trademark Office.
  • Harris, P. N. A., & Ferguson, J. K. (2012). Antibiotic therapy for inducible AmpC β-lactamase-producing Gram-negative bacilli: What are the alternatives to carbapenems, quinolones and aminoglycosides? International Journal of Antimicrobial Agents, 40(4), 297–305.
  • Hughes, D., & Karlén, A. (2014). Discovery and preclinical development of new antibiotics. Upsala Journal of Medical Sciences, 119(2), 162–169.
  • Jacoby, G. A. (2009). AmpC beta-lactamases. Clinical Microbiology Reviews, 22(1), 161–182. https://doi.org/10.1128/CMR.00036-08
  • Jaurin, B., & Grundström, T. (1981). ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of Beta-lactamases of the penicillinase type. Proceedings of the National Academy of Sciences, 78(8), 4897–4901. https://doi.org/10.1073/pnas.78.8.4897
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760
  • Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105(28), 6474–6487. https://doi.org/10.1021/jp003919d
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213.
  • Kolinski, A., & Skolnick, J. (1994). Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme. Proteins: Structure, Function, and Genetics, 18(4), 338–352. https://doi.org/10.1002/prot.340180405
  • Kozakov, D., Brenke, R., Comeau, S. R., & Vajda, S. (2006). PIPER: An FFT-based protein docking program with pairwise potentials . Proteins, 65(2), 392–406.
  • Li, H., Robertson, A. D., & Jensen, J. H. (2005). Very fast empirical prediction and rationalization of protein pKa values. Proteins: Structure, Function, and Bioinformatics, 61(4), 704–721. https://doi.org/10.1002/prot.20660
  • LigPrep, S. R. (2009). version 2.3. Schrödinger, LLC.
  • Na, J. H., An, Y. J., & Cha, S. S. (2017). GMP and IMP are competitive inhibitors of CMY-10, an extended-spectrum class C β-lactamase. Antimicrobial Agents and Chemotherapy, 61(5), e00098-17. https://doi.org/10.1128/AAC.00098-17
  • Nielsen, J. B., & Lampen, J. O. (1983). Beta-lactamase III of Bacillus cereus 569: Membrane lipoprotein and secreted protein. Biochemistry, 22(20), 4652–4656. https://doi.org/10.1021/bi00289a007
  • Philippon, A., Arlet, G., & Jacoby, G. A. (2002). Plasmid-determined AmpC-type β-lactamases. Antimicrobial Agents and Chemotherapy, 46(1), 1–11.
  • Qiao, J., Zhang, Q., Alali, W. Q., Wang, J., Meng, L., Xiao, Y., Yang, H., Chen, S., Cui, S., & Yang, B. (2017). Characterization of extended-spectrum β-lactamases (ESBLs)-producing Salmonella in retail raw chicken carcasses. International Journal of Food Microbiology, 248, 72–81.
  • Raval, A., Piana, S., Eastwood, M. P., & Shaw, D. E. (2016). Assessment of the utility of contact-based restraints in accelerating the prediction of protein structure using molecular dynamics simulations. Protein Science: A Publication of the Protein Society, 25(1), 19–29. https://doi.org/10.1002/pro.2770
  • Release, S. (2017a). 4: Schrödinger suite 2017-4 induced fit docking protocol. Glide, Schrödinger, LLC.
  • Release, S. (2017b). 4: Schrödinger suite 2017-4 protein preparation wizard. Epik, Schrödinger, LLC.
  • Release, S. (2019). 3: Maestro. Schrödinger, LLC.
  • Richmond, M. H., & Sykes, R. B. (1973). The β-lactamases of gram-negative bacteria and their possible physiological role. Advances in Microbial Physiology, 9, 31–88.
  • Robinson, T. P., Bu, D. P., Carrique-Mas, J., Fèvre, E. M., Gilbert, M., Grace, D., Hay, S. I., Jiwakanon, J., Kakkar, M., Kariuki, S., Laxminarayan, R., Lubroth, J., Magnusson, U., Thi Ngoc, P., Van Boeckel, T. P., & Woolhouse, M. E. J. (2016). Antibiotic resistance is the quintessential One Health issue. Transactions of the Royal Society of Tropical Medicine and Hygiene, 110(7), 377–380.
  • Rose, P. W., Prlić, A., Altunkaya, A., Bi, C., Bradley, A. R., Christie, C. H., … Green, R. K. (2016). The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Research, 5(D1), D271–D281.
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519.
  • Subramanian, D., Chakkyarath, V., Kumaravel, S. M., Venkatesan, B. P., & Natarajan, J. (2021). Design, synthesis and evaluation of antimicrobial database-derived peptides against drug-resistant gram-positive and gram-negative pathogens. International Journal of Peptide Research and Therapeutics, 27(2), 1459–1468. https://doi.org/10.1007/s10989-021-10183-2
  • Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., Theuretzbacher, U., Magrini, N., & WHO Pathogens Priority List Working Group. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet. Infectious Diseases, 18(3), 318–327.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.