805
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Determining similarities of COVID-19 – lung cancer drugs and affinity binding mode analysis by graph neural network-based GEFA method

, &
Pages 659-671 | Received 01 Jun 2021, Accepted 21 Nov 2021, Published online: 08 Dec 2021
 

Abstract

COVID-19 is a worldwide health crisis seriously endangering the arsenal of antiviral and antibiotic drugs. It is urgent to find an effective antiviral drug against pandemic caused by the severe acute respiratory syndrome (Sars-Cov-2), which increases global health concerns. As it can be expensive and time-consuming to develop specific antiviral drugs, reuse of FDA-approved drugs that provide an opportunity to rapidly distribute effective therapeutics can allow to provide treatments with known preclinical, pharmacokinetic, pharmacodynamic and toxicity profiles that can quickly enter in clinical trials. In this study, using the structural information of molecules and proteins, a list of repurposed drug candidates was prepared again with the graph neural network-based GEFA model. The data set from the public databases DrugBank and PubChem were used for analysis. Using the Tanimoto/jaccard similarity analysis, a list of similar drugs was prepared by comparing the drugs used in the treatment of COVID-19 with the drugs used in the treatment of other diseases. The resultant drugs were compared with the drugs used in lung cancer and repurposed drugs were obtained again by calculating the binding strength between a drug and a target. The kinase inhibitors (erlotinib, lapatinib, vandetanib, pazopanib, cediranib, dasatinib, linifanib and tozasertib) obtained from the study can be used as an alternative for the treatment of COVID-19, as a combination of blocking agents (gefitinib, osimertinib, fedratinib, baricitinib, imatinib, sunitinib and ponatinib) such as ABL2, ABL1, EGFR, AAK1, FLT3 and JAK1, or antiviral therapies (ribavirin, ritonavir-lopinavir and remdesivir).

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.