805
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Determining similarities of COVID-19 – lung cancer drugs and affinity binding mode analysis by graph neural network-based GEFA method

, &
Pages 659-671 | Received 01 Jun 2021, Accepted 21 Nov 2021, Published online: 08 Dec 2021

References

  • Alhudhaif, A., Polat, K., & Karaman, O. (2021). Determination of COVID-19 pneumonia based on generalized convolutional neural network model from chest X-ray images. Expert Systems with Applications, 180, 115141.
  • Amin, Sk. A., Ghosh, K., Gayen, S., & Jha, T. (2021). Chemical-informatics approach to COVID-19 drug discovery: Monte Carlo based QSAR, virtual screening and molecular docking study of some in-house molecules as papain-like protease (PLpro) inhibitors. Journal of Biomolecular Structure & Dynamics, 39(13), 4764–4773. https://doi.org/10.1080/07391102.2020.1780946
  • Bibi, N., Farid, A., Gul, S., Ali, J., Amin, F., Kalathiya, U., & Hupp, T. (2021). Drug repositioning against COVID-19: A first line treatment. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2021.1977698
  • Campillos, M., Kuhn, M., Gavin, A. C., Jensen, L. J., & Bork, P. (2008). Drug target identification using side-effect similarity. Science, 321(5886), 263–266. https://doi.org/10.1126/science.1158140
  • Cha, K., Kim, M. S., Oh, K., Shin, H., & Yi, G. S. (2014). Drug similarity search based on combined signatures in gene expression profiles. Healthcare Informatics Research, 20(1), 52–60. https://doi.org/10.4258/hir.2014.20.1.52
  • Chan, J. F.-W., Kok, K.-H., Zhu, Z., Chu, H., To, K. K.-W., Yuan, S., & Yuen, K.-Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections, 9 (1), 221–236.
  • Chen, X., Liu, M.-X., & Yan, G.-Y. (2012). Drug-target interaction prediction by random walk on the heterogeneous network. Molecular Biosystems, 8(7), 1970–1978. https://doi.org/10.1039/c2mb00002d
  • Cheng, A. C., Coleman, R. G., Smyth, K. T., Cao, Q., Soulard, P., Caffrey, D. R., Salzberg, A. C., & Huang, E. S. (2007). Structure-based maximal affinity model predicts small-molecule druggability. Nature Biotechnology, 25(1), 71–75. https://doi.org/10.1038/nbt1273
  • Cheng, F., & Zhao, Z. (2014). Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. Journal of the American Medical Informatics Association, 21, 278–286.
  • Cheng, F., Liu, C., Jiang, J., Lu, W., Li, W., Liu, G., Zhou, W., Huang, J., & Tang, Y. (2012). Prediction of drug-target interactions and drug repositioning via network-based inference. Plos Computational Biology, 8(5), e1002503. https://doi.org/10.1371/journal.pcbi.1002503
  • Domingo-Fernandez, D., Baksi, S., Schultz, B., Gadiya, Y., Karki, R., Raschka, T., Ebeling, C., & Hofmann-Apitius, M. (2020). COVID-19 knowledge graph: A computable, multi-modal, cause-and-effect knowledge model of COVID-19 pathophysiology. Bioinformatics, 37(9), 1332–1334.
  • DrugBank Online. (2021). Retrieved May 9, 2021, from https://go.drugbank.com/drugs
  • Ferdousi, R., Safdari, R., & Omidi, Y. (2017). Computational prediction of drug–drug interactions based on drugs functional similarities. Journal of Biomedical Informatics, 70, 54–64. https://doi.org/10.1016/j.jbi.2017.04.021
  • Gottlieb, A., Stein, G. Y., Oron, Y., Ruppin, E., & Sharan, R. (2012). Indı: A computational framework for inferring drug interactions and their associated recommendations. Molecular Systems Biology, 8(1), 592. https://doi.org/10.1038/msb.2012.26
  • Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., Ambasta, R. K., & Kumar, P. (2021). Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Molecular Diversity, 25(3), 1–46.
  • Hsieh, K., Wang, Y., Chen, L., Zhao, Z., Savitz, S., Jiang, X., Tang, J., & Kim, Y. (2020). Drug repurposing for COVID-19 using graph neural network with genetic, mechanistic, and epidemiological validation. arXiv:2009.10931
  • Jarmoskaite, I., AlSadhan, I., Vaidyanathan, P. P., & Herschlag, D. (2020). How to measure and evaluate binding affinities (Vol. 9, p. e57264). eLife Sciences Publications, Ltd.
  • Karaman, O. (2021). Boosting performance of transfer learning model for diagnosis of COVID-19 from computer tomography scans. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 16(1), 35–45.
  • Karaman, O., Alhudhaif, A., & Polat, K. (2021). Development of smart camera systems based on artificial intelligence network for social distance detection to fight against COVID-19. Applied Soft Computing, 110, 107610. https://doi.org/10.1016/j.asoc.2021.107610
  • Keiser, M. J., Setola, V., Irwin, J. J., Laggner, C., Abbas, A. I., Hufeisen, S. J., Jensen, N. H., Kuijer, M. B., Matos, R. C., Tran, T. B., Whaley, R., Glennon, R. A., Hert, J., Thomas, K. L. H., Edwards, D. D., Shoichet, B. K., & Roth, B. L. (2009). Predicting new molecular targets for known drugs. Nature, 462(7270), 175–181. https://doi.org/10.1038/nature08506
  • Lounkine, E., Keiser, M. J., Whitebread, S., Mikhailov, D., Hamon, J., Jenkins, J. L., Lavan, P., Weber, E., Doak, A. K., Côté, S., Shoichet, B. K., & Urban, L. (2012). Large-scale prediction and testing of drug activity on side-effect targets. Nature, 486(7403), 361–367. https://doi.org/10.1038/nature11159
  • Lu, Y., Guo, Y., & Korhonen, A. (2017). Link prediction in drug-target interactions network using similarity indices. BMC Bioinformatics, 18(1), 39. https://doi.org/10.1186/s12859-017-1460-z
  • Lupberger, J., Zeisel, M. B., Xiao, F., Thumann, C., Fofana, I., Zona, L., Davis, C., Mee, J., Turek, M., Gorke, S., Royer, C., Fischer, B., Zahid, M. N., Lavillette, D., Fresquet, J., Cosset, F. L., Rothenberg, S. M., Pietschmann, T., Patel, A. H., … Baumert, T. F. (2011). EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nature Medicine, 17(5), 589–595. https://doi.org/10.1038/nm.2341
  • Muzio, G., O’Bray, L., & Borgwardt, K. (2021). Biological network analysis with deep learning. Briefings in Bioinformatics, 22(2), 1515–1530. https://doi.org/10.1093/bib/bbaa257
  • National Center for Biotechnology Information. (2021). Retrieved May 9, 2021, from https://pubchem.ncbi.nlm.nih.gov/
  • Nguyen, T. M., Nguyen, T., Le, T. M., & Tran, T. (2021). GEFA: Early fusion approach in drug-target affinity prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 5555(01), 1–1. https://doi.org/10.1109/TCBB.2021.3094217
  • Polat, Ç., Karaman, O., Karaman, C., Korkmaz, G., Balcí, M. C., & Kelek, S. E. (2021). COVID-19 diagnosis from chest X-ray images using transfer learning: Enhanced performance by debiasing dataloader. Journal of X-Ray Science and Technology, 29(1), 19–36.
  • Riniker, S., & Landrum, G. A. (2013). Similarity maps-a visualization strategy for molecular fingerprints and machine-learning methods. Journal of Cheminformatics, 5(1), 1–7. https://doi.org/10.1186/1758-2946-5-43
  • Rogers, D. J., & Tanimoto, T. T. (1960). A computer program for classifying plants. Science, 132(3434), 1115–1118. https://doi.org/10.1126/science.132.3434.1115
  • Sawada, R., Iwata, H., Mizutani, S., & Yamanishi, Y. (2015). Target-based drug repositioning using large-scale chemical-protein interactome data. Journal of Chemical Information and Modeling, 55(12), 2717–2730.
  • Simmons, G., Reeves, J. D., Rennekamp, A. J., Amberg, S. M., Piefer, A. J., & Bates, P. (2004). Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proceedings of the National Academy of Sciences, 101(12), 4240–4245. https://doi.org/10.1073/pnas.0306446101
  • Stebbing, J., Phelan, A., Griffin, I., Tucker, C., Oechsle, O., Smith, D., & Richardson, P. (2020). COVID-19: Combining antiviral and anti-inflammatory treatments. The Lancet. Infectious Diseases, 20(4), 400–402. https://doi.org/10.1016/S1473-3099(20)30132-8
  • Tatonetti, N. P., Ye, P. P., Daneshjou, R., & Altman, R. B. (2012). Data-driven prediction of drug effects and interactions. Science Translational Medicine, 4(125), 125ra31. https://doi.org/10.1126/scitranslmed.3003377
  • The WHO MERS-CoV Research Group. (2013). State of knowledge and data gaps of Middle East respiratory syndrome coronavirus (MERS-CoV) in humans. Plos Currents, 5.
  • van Laarhoven, T., Nabuurs, S. B., & Marchiori, E. (2011). Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics, 27(21), 3036–3043. https://doi.org/10.1093/bioinformatics/btr500
  • Velavan, T. P., & Meyer, C. G. (2020). The COVID-19 epidemic. Tropical Medicine & International Health, 25(3), 278–280. https://doi.org/10.1111/tmi.13383
  • Vilar, S., Harpaz, R., Uriarte, E., Santana, L., Rabadan, R., & Friedman, C. (2012). Drug-drug interaction through molecular structure similarity analysis. Journal of the American Medical Informatics Association, 19(6), 1066–1074. https://doi.org/10.1136/amiajnl-2012-000935
  • Wang, Q., Li, M., Wang, X., Parulian, N., Han, G., Ma, J., Tu, J., Lin, Y., Zhang, H., Liu, W., Chauhan, A., Guan, Y., Li, B., Li, R., Song, X., Fung, Y. R., Ji, H., Han, J., Chang, S.-F., … Onyshkevych, B. (2020). COVID-19 literature knowledge graph construction and drug repurposing report generation. arXiv, preprint. 2007.00576
  • Wieder, O., Kohlbacher, S., Kuenemann, M., Garon, A., Ducrot, P., Seidel, T., & Langer, T. (2020). A compact review of molecular property prediction with graph neural networks. Drug Discovery Today: Technologies, 1740–6749.
  • Wilson, A. J., Troy-Barnes, E., Subhan, M., Clark, F., Gupta, R., Fielding, A. K., Kottaridis, P., Mansour, M. R., O’Nions, J., Payne, E., Chavda, N., Baker, R., Thomson, K., & Khwaja, A. (2020). Successful remission induction therapy with gilteritinib in a patient with de novo FLT3-mutated acute myeloid leukaemia and severe COVID-19. British Journal of Haematology, 189–191.
  • Wu, Y., Ho, W., Huang, Y., Jin, D.-Y., Li, S., Liu, S.-L., Liu, X., Qiu, J., Sang, Y., Wang, Q., Yuen, K.-Y., & Zheng, Z.-M. (2020). SARS-CoV-2 is an appropriate name for the new coronavirus. The Lancet, 395(10228), 949–950. https://doi.org/10.1016/S0140-6736(20)30557-2
  • Xia, Z., Wu, L.-Y., Zhou, X., & Wong, S. T. (2010). Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Systems Biology, 4(S2), 6. https://doi.org/10.1186/1752-0509-4-S2-S6
  • Zhang, P., Wang, F., Hu, J., & Sorrentino, R. (2014). Toward personalized medicine: leveraging patient similarity and drug similarity analytics. AMIA Joint Summits Translational Science Proceedings, 132–136.
  • Zheng, X., Ding, H., Mamitsuka, H., & Zhu, S. (2013). Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1025–1033.
  • Zhou, Y., Wang, F., Tang, J., Nussinov, R., & Cheng, F. (2020). Artificial intelligence in COVID-19 drug repurposing. The Lancet Digital Health, 2, 667–676.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.