94
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Binding mechanism, photo-induced cleavage and computational studies of interaction cefepime drug with Human serum albumin

ORCID Icon, , &
Received 23 May 2023, Accepted 07 Jan 2024, Published online: 17 Jan 2024
 

Abstract

The binding interaction of cefepime to human serum albumin (HSA) in aqueous solution was investigated by molecular spectroscopy (UV spectra, fluorescence spectra and CD spectra), photo-cleavage and modeling studies under simulative physiological conditions. Spectrophotometric results are rationalized in terms of a static quenching process and binding constant (Kb) and the number of binding sites (n ≈ 1) were calculated using fluorescence quenching approaches at three temperature settings. Thermodynamic data of ΔG, ΔH and ΔS at different temperatures were evaluated. The results showed that the electrostatic and hydrogen bonding interactions play a major role in the binding of cefepime to HSA. The value of 3.4 nm for the distance r between the donor (HSA) and acceptor (cefepime) was derived from the fluorescence resonance energy transfer (FRET). FTIR and CD measurements has been reaffirmed HSA–cefepime association and demonstrated reduction in α-helical content of HSA. Furthermore, the study of molecular modeling also indicated that cefepime could strongly bind to the site I (subdomain IIA) of HSA. Additionally, cefepime shows efficient photo- cleavage of HSA cleavage. Our results may provide valuable information to understand the pharmacological profile of cefepime drug delivery in blood stream.

Communicated by Ramaswamy H. Sarma

Acknowledgments

Author WMA thanks, Ministry of Higher Education & Scientific Research, Sana’a, Yemen (Ser. no. 01139/2014) for the sanction of major research grant. Authors are also thankful to Dr. Rizwan Hasan Khan for performing, CD and IR studies.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.