94
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Binding mechanism, photo-induced cleavage and computational studies of interaction cefepime drug with Human serum albumin

ORCID Icon, , &
Received 23 May 2023, Accepted 07 Jan 2024, Published online: 17 Jan 2024

References

  • Aparna, C., Kaviya, G., & Deepa, M. (2023). Analyzing the function and structure of components within mRNA COVID–19 vaccination for determining the cause of anaphylaxis reaction in pfizer recipients. 1(1), 0001–0005.
  • Apinya, B., Stephen, P. L., Challa, V. K., & Jeffrey, R. B. (1998). Protein cleavage by transition metal complexes bearing amino acid Substituents. Biochimica et Biophysica Acta, 1387, 309–316. https://doi.org/10.1016/S0167/-4838(98)001145-9
  • Bao–Li, W., Song–Bo, K., Zhen–Yi, L., & Jie–Hua, S. (2020). Insight into the binding behavior of ceritinib on human α–1 acid glycoprotein: Multi–spectroscopic and molecular modeling approaches. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 232, 118160. https://doi.org/10.1016/j.saa.2020.118160
  • Breustedt, D. A., Schönfeld, D. L., & Skerra, A. (2006). Comparative ligand-binding analysis of ten human lipocalins. Biochimica et Biophysica Acta, 1764(2), 161–173. https://doi.org/10.1016/j.bbapap.2005.12.006
  • Chapman, T. M., & Perry, C. M. (2003). Cefepime: A review of its use in the management of hospitalized patients with pneumonia. American Journal of Respiratory Medicine: Drugs, Devices, and Other Interventions, 2(1), 75–107. https://doi.org/10.1007/BF03256641
  • Dąbrowska, M., Starek, M., Krzek, J., Papp, E., & Król, P. (2015). A degradation study of cefepime hydrochloride in solutions under various stress conditions by TLC–densitometry. Biomedical Chromatography, 29(3), 388–395. https://doi.org/10.1002/bmc.3288
  • de Souza, G. L. C., de Oliveira, L. M., Vicari, R. G., & Brown, A. (2016). A DFT investigation on the structural and antioxidant properties of new isolated interglycosidic O–(1→3) linkage flavonols. Journal of Molecular Structure, 22, 1–9. https://doi.org/10.1007/s00894–016–2961–9
  • Debojyoti, L., Ritankar, M., Dibyendu, M., Tridib, K. G., Rajan, R. D., & Akhil, R. C. (2011). Remarkable photocytotoxicity in hypoxic HeLa cells by a dipyridophenazine copper(II) Schiff base thiolate. Journal of Inorganic Biochemistry, 105, 1086–1094. https://doi.org/10.1016/j.jinorgbio.2011.05.010
  • Felix, K. (2008). Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. Journal of Controlled Release, 132, 171–183. https://doi.org/10.1016/j.jconrel.2008.05.010
  • Feng, Y., Yao, Z., & Hong, L. (2014). Interactive Association of Drugs Binding to Human Serum Albumin. International Journal of Molecular Sciences, 15, 3580–3595. https://doi.org/10.3390/ijms15033580
  • Fengling, C., Yinghua, Y., Qiangzhai, Z., Xiaojun, Y., Guirong, Q., & Yan, L. (2009). Characterization of the interaction between 8–bromoadenosine with human serum albumin and its analytical application. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 74(4), 964–971. https://doi.org/10.1016/j.saa.2009.09.001
  • Giuliana, G. G., & Carlo, G. (1993). Cefepime: Overview of activity in vitro and in vivo. Journal of Antimicrobial Chemotherapy, 32, 87–94. https://doi.org/10.1093/jac/32.suppl_b.87
  • He, W., Li, Y., Si, H., Dong, Y., Sheng, F., Yao, X., & Hu, Z. (2006). Molecular modeling and spectroscopic studies on the binding of guaiacol to human serum albumin. Journal of Photochemistry and Photobiology A: Chemistry, 182(2), 158–167. https://doi.org/10.1016/j.jphotochem.2006.02.004
  • Hong-Mei, Z., Ting-Ting, C., Qiu-Hua, Z., & Yan-Qing, W. (2009). Binding of caffeine, theophylline, and theobromine with human serum albumin: A spectroscopic study. Journal of Molecular Structure, 938, 221–228. https://doi.org/10.1016/j.molstruc.2009.09.032
  • Huilun, C., Honghao, R., Jian, Y., Yongxiang, Q., Fei, W., & Jun, Y. (2015). Interaction of diuron to human serum albumin: Insights from spectroscopic and molecular docking studies. Journal of Environmental Science and Health, 51(3), 154–159. https://doi.org/10.1016/j.jpba.2005.11.037
  • Joseph, R. L., & Gregorio, W. (1973). Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry, 12, 4161–4170. https://doi.org/10.1021/bi00745a020
  • Kandagal, P. B., Ashoka, S., Seetharamappa, J., Shaikh, S. M. T., Jadegoud, Y., & Ijare, O. B. (2006). Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. Journal of Pharmaceutical and Biomedical Analysis, 41(2), 393–399. https://doi.org/10.1016/j.jpba.2005.11.037
  • Kelly, L. M., Mohammad, H. A., & Charles, A. P. (2021). Beta–lactams dosing in critically ill patients with gram–negative bacterial infections: A PK/PD approach. Antibiotic, 10(1154), 1–14. https://doi.org/10.3390/antibiotics10101154
  • Lakowicz, J. R. (1999). Principles of fluorescence spectroscopy (2nd ed., pp. 237–265). Plenum Press.
  • Lee, S. Y., Kuti, J. L., & Nicolau, D. P. (2007). Cefepime pharmacodynamics in patients with extended spectrum beta–lactamase (ESBL) and non–ESBL infections. The Journal of Infection, 54(5), 463–468. https://doi.org/10.1016/j.jinf.2006.09.004
  • Liu, J. Q., Tian, J. M., Tian, X., Hu, Z. D., & Chen, X. G. (2004). Interaction of isofraxidin with human serum albumin. Bioorganic & Medicinal Chemistry, 12(2), 469–474. https://doi.org/10.1016/j.bmc.2003.10.030
  • Lu, Z. X., Cui, T., & Shi, Q. L. (1987). Applications of circular ichroism and optical rotatory dispersion in molecular biology (1st ed., pp79–82). Science Press.
  • Massimo, S., Alain, C. –M., & Francesco, M. L. (2017). The management of intra–abdominal infections from a global perspective: 2017 WSES guidelines for management of intra–abdominal infections. World Journal of Emergency Surgery, 12(29), 1–34. https://doi.org/10.1186/s13017–017–0141–6
  • Mena, M. L., Moreno-Gordaliza, E., Moraleja, I., Cañas, B., & Gómez-Gómez, M. M. (2011). OFFGEL isoelectric focusing and polyacrylamide gel electrophoresis separation of platinum–binding proteins. Journal of Chromatography A, 1218(9), 1281–1290. https://doi.org/10.1016/j.chroma.2010.12.115
  • Mustard, D., & Ritchie, D. W. (1002/prot.20569). Docking essential dynamics eigen structures. Proteins, 60(2), 269–274. 10 https://doi.org/10.1002/prot.20569
  • Petitpas, I., Bhattacharya, A. A., Twine, S., East, M., & Curry, S. (2001). Crystal structure analysis of warfarin binding to human serum albumin: Anatomy of drug site I. The Journal of Biological Chemistry, 276(25), 22804–22809. https://doi.org/10.1074/jbc.M100575200
  • Rajkumar, V., Rajesh, B. M., Jayashree, A., Visweswara, R. P., Vijaya, K. R. A., Krishna, S. E., Srinivas, U., Sivaprasad, K., & Yogeeswari, P. (2020). Synthesis of novel cytotoxic tetracyclic acridone derivatives and study of their molecular docking, ADMET, QSAR, bioactivity and protein binding properties. Scientific Reports, 10, 20720. https://doi.org/10.1038/s41598-020-77590-1
  • Robert, R., & Redfield, M. D. (2019). Antibiotic resistance threats in the United States. Centers for Disease Control and Prevention (U.S.). https://doi.org/10.15620/cdc:82532
  • Roos, J. F., Bulitta, J., Lipman, J., & Kirkpatrick, C. M. (2006). Pharmacokinetic pharmacodynamic rationale for cefepime dosing regimens in intensive care units. The Journal of Antimicrobial Chemotherapy, 58(5), 987–993. https://doi.org/10.1093/jac/dkl349
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Sandra, M., Ilse, M., & Marconia, G. (2011). Combination of spectroscopic and computational methods to get an understanding of supramolecular chemistry of drugs: From simple host systems to biomolecules. Physical Chemistry Chemical Physics, 13, 20893–20905. https://doi.org/10.1039/c1cp21992h
  • Sharma, A., & Schulman, S. G. (1999). Introduction to fluorescence spectroscopy (pp. 58–59). John Wiley & Sons, Inc.
  • Song Bo, K., Zhen, Y., Lin Bao, L. W., Jie Hua, S., & Ying Xin, L. (2020). Evaluation of the binding behavior of olmutinib (HM61713) with model transport protein: Insights from spectroscopic and molecular docking studies. Journal of Molecular Structure, 1224, 129024. https://doi.org/10.1016/j.molstruc.2020.129024
  • Sułkowska, A., Bojko, B., Równicka, J., & Sułkowski, W. W. (2006). Paracetamol and cytarabine binding competition in high affinity binding sites of transporting protein. Journal of Molecular Structure, 792–793, 249–256. https://doi.org/10.1016/j.saa.2020.118160
  • Surewicz, W. K., Mantsch, H. H., & Chapman, D. (1993). Determination of protein secondary structure by Fourier transform infrared spectroscopy: A critical assessment. Biochemistry, 32(2), 389–394. https://doi.org/10.1021/bi00053a001
  • Trynda-Lemiesz, L., Keppler, B. K., & Kozłowski, H. (1999). Studies on the interactions between human serum albumin and imidazolium [trans–tetrachlorobis (imidazol) ruthenate (III.)]. Journal of Inorganic Biochemistry, 73(3), 123–128. https://doi.org/10.1016/s0162–0134(00)00062–3
  • Vardanyan, R. S., & Hruby, V. J. (2006). Antibiotics: Synthesis of essential drugs. Synthesis of essential drugs (pp. 425–498). Elsevier Science https://doi.org/10.1016/B978–044452166–8/50032–7
  • Waddhaah, M. A., Ahmed, A. E., & Manal, S. (2019). Interaction and photo–induced cleavage studies of meropenem drug with human serum albumin using spectroscopic and molecular docking investigations. Journal of Biomolecular Structure and Dynamics, 37(12), 3282–3289. https://doi.org/10.1080/07391102.2018.1509731
  • Wang, B.-L., Pan, D.-Q., Zhou, K.-L., Lou, Y.-Y., & Shi, J.-H. (2018). Multi-spectroscopic approaches and molecular simulation research of the intermolecular interaction between the angiotensin-converting enzyme inhibitor (ACE inhibitor) benazepril and bovine serum albumin (BSA). Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 212, 15–24. https://doi.org/10.1016/j.saa.2018.12.040
  • Waralee, R., Kamonrat, P., Ratchanok, P., Supaluk, P., Virapong, P., & Tanawut, T. (2021). In silico and multi‑spectroscopic analyses on the interaction of 5‑amino‑8‑hydroxyquinoline and bovine serum albumin as a potential anticancer agent. Scientific Reports, 11, 20187. https://doi.org/10.1038/s41598-021-99690-2
  • Wee, H. A., Elisa, D., Lucienne, J., & Paul, J. D. (2007). Strategy to tether organometallic ruthenium-arene anticancer compounds to recombinant human serum albumin. Inorganic Chemistry, 46, 9048–9050. https://doi.org/10.1021/ic701474m
  • Wenskowsky, L., Wagner, M., Reusch, J., Schreuder, H., Matter, H., Opatz, T., & Matthias Petry, S. (2020). Resolving binding events on the multifunctional human serum albumin. Chem. Med. Chem, 15, 738–743. https://doi.org/10.1002/cmdc.202000069
  • Wolfe, A., Shimer, G. H., & Meehan, T. (1987). Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry, 26(20), 6392–6396. https://doi.org/10.1021/bi00394a013
  • Xie, M. X., Long, M., Liu, Y., Qin, C., & Wang, Y. D. (2006). Characterization of the interaction between human serum albumin and morin. Biochimica et Biophysica Acta, 1760(8), 1184–1191. https://doi.org/10.1016/j.bbagen.2006.03.026
  • Ye Zhong, Z., Bo, Z., Yan Xia, L., Chun Xia, Z., Xin Liang, D., & Yi, L. (2008). Fluorescence study on the interaction of bovine serum albumin with P–aminoazobenzene. Journal of Fluorescence, 18, 109–118. https://doi.org/10.1007/s10895–007–0247–4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.