78
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Elucidating anti-sclerostin mechanism of baicalein using LRP6-Sclersotin complex of canonical Wnt/β-catenin signaling pathway

&
Received 03 Oct 2023, Accepted 10 Jan 2024, Published online: 19 Jan 2024
 

Abstract

Flavonoids are polyphenolic compounds produced by plants as secondary metabolites that are known to exhibit wide range of pharmaceutical properties. Flavonoids from different medicinal plants have been used in traditional medicine to treat several musculoskeletal disorders for centuries. Of the numerous flavonoids, baicalein from Oroxylum indicum has a well-documented protective effect in skeletal health. However, studies into its influence on the canonical Wnt/β-catenin signaling pathway for musculoskeletal disorders remain limited. With the results of our previous study, the current research investigated the molecular mechanism of baicalein to inhibit the interaction between LRP6 and sclerostin to activate the canonical Wnt/β-catenin signaling pathway. Molecular docking revealed that baicalein docks between LRP6 and sclerostin with a binding energy of −8.4 kcal/mol and interacts with key binding residues of both the proteins. The molecular dynamics simulations predicted the stability of baicalein through 100 ns with more conformational changes observed in sclerostin than LRP6 especially in and around the PNAIG motif of loop-2 region, hinting at a possible inhibitory effect of baicalein over sclerostin. The findings of this research could pave the way for novel drug design approaches while promoting the use of natural flavonoids as potential therapeutics for musculoskeletal disorders.

Communicated by Ramaswamy H. Sarma

Acknowledgement

The author (RM) sincerely thanks Vellore Institute of Technology (VIT), Vellore for providing Teaching cum research assistant (TRA) fellowship as the financial support.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.