78
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Elucidating anti-sclerostin mechanism of baicalein using LRP6-Sclersotin complex of canonical Wnt/β-catenin signaling pathway

&
Received 03 Oct 2023, Accepted 10 Jan 2024, Published online: 19 Jan 2024

References

  • Abou Baker, D. H. (2022). An ethnopharmacological review on the therapeutical properties of flavonoids and their mechanisms of actions: A comprehensive review based on up to date knowledge. Toxicology Reports, 9, 445–469. https://doi.org/10.1016/J.toxrep.2022.03.011
  • Adhish, M., & Manjubala, I. (2023). An in-silico approach to the potential modulatory effect of taurine on sclerostin (SOST) and its probable role during osteoporosis. Journal of Biomolecular Structure & Dynamics, 2023, 1–16. https://doi.org/10.1080/07391102.2023.2249103
  • Alalwan, T. A. (2023). Nutraceuticals and their role in promoting musculo-skeletal healthy aging. Annali di igiene: medicina preventiva e di comunita, 35(4), 486–497. https://doi.org/10.7416/AI.2022.2552
  • Baron, R., & Gori, F. (2018). Targeting WNT signaling in the treatment of osteoporosis. Current Opinion in Pharmacology, 40, 134–141. https://doi.org/10.1016/J.coph.2018.04.011
  • Baron, R., & Kneissel, M. (2013). WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nature Medicine, 19(2), 179–192. https://doi.org/10.1038/nm.3074
  • BIOVIA, Dassault Systèmes. (2021). Discovery studio visualizer version v21.1.0.20298., Dassault Systèmes.
  • Bourhis, E., Wang, W., Tam, C., Hwang, J., Zhang, Y., Spittler, D., Huang, O. W., Gong, Y., Estevez, A., Zilberleyb, I., Rouge, L., Chiu, C., Wu, Y., Costa, M., Hannoush, R. N., Franke, Y., & Cochran, A. G. (2011). Wnt antagonists bind through a short peptide to the first β-propeller domain of LRP5/6. Structure, 19(10), 1433–1442. https://doi.org/10.1016/j.str.2011.07.005
  • Cao, L., Wang, J., Zhang, Y., Tian, F., & Wang, C. (2022). Osteoprotective effects of flavonoids: Evidence from in vivo and in vitro studies (Review). Molecular Medicine Reports, 25(6), 12716. https://doi.org/10.3892/mmr.2022.12716
  • Choi, J., Lee, K., Kang, M., Lim, S. K., & Tai No, K. (2018). In silico discovery of quinoxaline derivatives as novel LRP5/6-sclerostin interaction inhibitors. Bioorganic & Medicinal Chemistry Letters, 28(6), 1116–1121. https://doi.org/10.1016/J.BMCL.2018.01.050
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology, 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Delgado-Calle, J., Sato, A. Y., & Bellido, T. (2017). Role and mechanism of action of Sclerostin in bone. Bone, 96, 29–37. https://doi.org/10.1016/J.bone.2016.10.007
  • Dinda, B., Silsarma, I., Dinda, M., & Rudrapaul, P. (2015). Oroxylum indicum (L.) Kurz, an important Asian traditional medicine: From traditional uses to scientific data for its commercial exploitation. Journal of Ethnopharmacology, 161, 255–278. https://doi.org/10.1016/J.JEP.2014.12.027
  • Duan, P., & Bonewald, L. F. (2016). The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. The International Journal of Biochemistry & Cell Biology, 77(Pt A), 23–29. https://doi.org/10.1016/J.biocel.2016.05.015
  • Esakkimuthu, S., Mutheeswaran, S., Elankani, P., Pandikumar, P., & Ignacimuthu, S. (2021). Quantitative analysis of medicinal plants used to treat musculoskeletal ailments by non-institutionally trained siddha practitioners of Virudhunagar district, Tamil Nadu, India. Journal of Ayurveda and Integrative Medicine, 12(1), 58–64. https://doi.org/10.1016/J.jaim.2018.11.005
  • Firoz, A., & Talwar, P. (2023). Role of death-associated protein kinase 1 (DAPK1) in retinal degenerative diseases: An in-silico approach towards therapeutic intervention. Journal of Biomolecular Structure & Dynamics, 2023, 1–13. https://doi.org/10.1080/07391102.2023.2227720
  • Holdsworth, G., Slocombe, P., Doyle, C., Sweeney, B., Veverka, V., Le Riche, K., Franklin, R. J., Compson, J., Brookings, D., Turner, J., Kennedy, J., Garlish, R., Shi, J., Newnham, L., McMillan, D., Muzylak, M., Carr, M. D., Henry, A. J., Ceska, T., & Robinson, M. K. (2012). Characterization of the interaction of sclerostin with the low density lipoprotein receptor-related protein (LRP) family of wnt co-receptors. The Journal of Biological Chemistry, 287(32), 26464–26477. https://doi.org/10.1074/JBC.M112.350108
  • Hu, Z., Guan, Y., Hu, W., Xu, Z., & Ishfaq, M. (2022). An overview of pharmacological activities of baicalin and its aglycone baicalein: New insights into molecular mechanisms and signaling pathways. Iranian Journal of Basic Medical Sciences, 25(1), 14–26. https://doi.org/10.22038/IJBMS.2022.60380.13381
  • Huang, P., Yan, R., Zhang, X., Wang, L., Ke, X., & Qu, Y. (2019). Activating Wnt/β-catenin signaling pathway for disease therapy: Challenges and opportunities. Pharmacology & Therapeutics, 196, 79–90. https://doi.org/10.1016/J.pharmthera.2018.11.008
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Kantasrila, R., Pandith, H., Balslev, H., Wangpakapattanawong, P., Panyadee, P., & Inta, A. (2020). Medicinal plants for treating musculoskeletal disorders among Karen in Thailand. Plants, 9(7), 811. https://doi.org/10.3390/plants9070811
  • Kawano, Y., & Kypta, R. (2003). Secreted antagonists of the Wnt signalling pathway. Journal of Cell Science, 116(Pt 13), 2627–2634. https://doi.org/10.1242/JCS.00623
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science, 27(1), 129–134. https://doi.org/10.1002/PRO.3289
  • Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/ACS.JCTC.5B00935
  • Leupin, O., Piters, E., Halleux, C., Hu, S., Kramer, I., Morvan, F., Bouwmeester, T., Schirle, M., Bueno-Lozano, M., Fuentes, F. J. R., Itin, P. H., Boudin, E., de Freitas, F., Jennes, K., Brannetti, B., Charara, N., Ebersbach, H., Geisse, S., Lu, C. X., … Kneissel, M. (2011). Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. The Journal of Biological Chemistry, 286(22), 19489–19500. https://doi.org/10.1074/JBC.M110.190330
  • Muniyasamy, R., & Manjubala, I. (2023). Identification of potential sclerostin inhibiting flavonoids from Oroxylum indicum: An insilico approach. Journal of Biomolecular Structure & Dynamics, 1–12. https://doi.org/10.1080/07391102.2023.2239955
  • Muthusamy, K., Mohan, S., Nagamani, S., & Kesavan, C. (2016). Identification of novel small molecules that bind to the loop2 region of sclerostin – an in silico computational analysis. Physiological Research, 65(5), 871–878. https://doi.org/10.33549/Physiolres.933267
  • Omran, A., Atanasova, D., Landgren, F., & Magnusson, P. (2022). Sclerostin: From molecule to clinical biomarker. International Journal of Molecular Sciences, 23(9), 4751. https://doi.org/10.3390/IJMS23094751
  • Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/JNS.2016.41
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/JCC.20289
  • Rathi, B., & Rathi, R. (2020). Quantitative analysis of medicinal plants used by the traditional healers of Karanja block of Wardha district for treating Musculoskeletal disorders. International Journal of Ayurvedic Medicine, 11(2), 175–183. https://doi.org/10.47552/ijam.v11i2.1417
  • Rudnicki, M. A., & Williams, B. O. (2015). Wnt signaling in bone and muscle. Bone, 80, 60–66. https://doi.org/10.1016/J.bone.2015.02.009
  • Saul, D., Kling, J. H., Kosinsky, R. L., Hoffmann, D. B., Komrakova, M., Wicke, M., Menger, B., & Sehmisch, S. (2016). Effect of the lipoxygenase inhibitor baicalein on muscles in ovariectomized rats. Journal of Nutrition and Metabolism, 2016, 3703216–3703214. https://doi.org/10.1155/2016/3703216
  • Saul, D., Weber, M., Zimmermann, M. H., Kosinsky, R. L., Hoffmann, D. B., Menger, B., Taudien, S., Lehmann, W., Komrakova, M., & Sehmisch, S. (2019). Effect of the lipoxygenase inhibitor baicalein on bone tissue and bone healing in ovariectomized rats. Nutrition & Metabolism, 16(1), 2. https://doi.org/10.1186/s12986-018-0327-2
  • Schrödinger, L., & DeLano, W. (2020). PyMOL http://www.pymol.org/pymol.
  • Suvarna, V., Sarkar, M., Chaubey, P., Khan, T., Sherje, A., Patel, K., & Dravyakar, B. (2018). Bone health and natural products-an insight. Frontiers in Pharmacology, 9, 981. https://doi.org/10.3389/fphar.2018.00981
  • Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., Emwas, A.-H., & Jaremko, M. (2020). Important flavonoids and their role as a therapeutic agent. Molecules, 25(22), 5243. https://doi.org/10.3390/MOLECULES25225243
  • Vangone, A., Schaarschmidt, J., Koukos, P., Geng, C., Citro, N., Trellet, M. E., Xue, L. C., & Bonvin, A. M. J. J. (2019). Large-scale prediction of binding affinity in protein–small ligand complexes: The PRODIGY-LIG web server. Bioinformatics, 35(9), 1585–1587. https://doi.org/10.1093/BIOINFORMATICS/BTY816
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Yooin, W., Saenjum, C., Ruangsuriya, J., & Jiranusornkul, S. (2020). Discovery of potential sclerostin inhibitors from plants with loop2 region of sclerostin inhibition by interacting with residues outside Pro-Asn-Ala-Ile-Gly motif. Journal of Biomolecular Structure & Dynamics, 38(5), 1272–1282. https://doi.org/10.1080/07391102.2019.1599427
  • Zhang, X., Guan, X., Piao, Y., Che, X., Si, M., & Jin, J. (2022). Baicalein induces apoptosis of rheumatoid arthritis synovial fibroblasts through inactivation of the PI3K/Akt/mTOR pathway. Evidence-Based Complementary and Alternative Medicine, 2022, 3643265. https://doi.org/10.1155/2022/3643265

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.