159
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Discovery of novel bromodomain-containing protein 4 (BRD4-BD1) inhibitors combined with 3d-QSAR, molecular docking and molecular dynamics in silico

, , , &
Received 28 Sep 2023, Accepted 14 Feb 2024, Published online: 29 Feb 2024
 

Abstract

Bromine-containing domain protein 4 (BRD4) plays a crucial role in regulating transcription and genome stability. Selective inhibitors of BRD4-BD1 can specifically target specific bromine domains to affect cell proliferation, apoptosis, and differentiation. In this work, 43 selective benzoazepinone BRD4-BD1 inhibitors were studied using molecular simulations and three-dimensional quantitative conformation relationships (3D-QSAR). A reliable 3D-QSAR model was established based on COMFA (Q2 = 0.532, R2 = 0.981) and COMSIA (S + E + H (Q2 = 0.536, R2 = 0.979) two different analysis methods. Through 3D-QSAR model prediction and quantum chemical analysis, 15 small molecules with stronger inhibitory activity than the template compounds were constructed, and 5 new compounds with higher predictive activity and binding affinity were screened by molecular docking and ADMET methods. According to the molecular dynamics simulation, the key residues that can interact with BRD4-BD1 protein and molecular docking results are consistent, including ASN140, MET132, GLN85, MET105, ASN135 and TYR97. From the MD trajectory, we calculated and analyzed RMSD, RMSF, free binding energy, FECM, DCCM and PCA, the loop region formed by amino acids VAL45∼PRO62 showed α-helix, β-folding and clustering towards the active center with the extension of simulation time. Further optimization of the structure of active candidate compounds A6, A11, A14, and A15 will provide the necessary theoretical basis for the synthesis and activity evaluation of novel BRD4-BD1 inhibitors.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.