169
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Discovery of novel bromodomain-containing protein 4 (BRD4-BD1) inhibitors combined with 3d-QSAR, molecular docking and molecular dynamics in silico

, , , &
Received 28 Sep 2023, Accepted 14 Feb 2024, Published online: 29 Feb 2024

References

  • Abdelsattar, A. S., Mansour, Y., & Aboul-Ela, F. (2021). The perturbed free-energy landscape: Linking ligand binding to biomolecular folding. Chembiochem, 22(9), 1499–1516. https://doi.org/10.1002/cbic.202000695
  • Acharya, A., Pathania, A. S., Pandey, K., Thurman, M., Vann, K. R., Kutateladze, T. G., Challagundala, K. B., Durden, D. L., & Byrareddy, S. N. (2022). PI3K-alpha/mTOR/BRD4 inhibitor alone or in combination with other anti-virals blocks replication of SARS-CoV-2 and its variants of concern including Delta and Omicron. Clinical and Translational Medicine, 12(4), e806. https://doi.org/10.1002/ctm2.806
  • Ahmad, S., Gupta, D., Ahmed, T., & Islam, A. (2023). Designing of new tetrahydro-beta-carboline-based ABCG2 inhibitors using 3D-QSAR, molecular docking, and DFT tools. Journal of Biomolecular Structure & Dynamics, 41(23), 14016–14027.
  • Bai, P., Lu, X., Lan, Y., Chen, Z., Patnaik, D., Fiedler, S., Striar, R., Haggarty, S. J., & Wang, C. (2020). Radiosynthesis and in vivo evaluation of a new positron emission tomography radiotracer targeting bromodomain and extra-terminal domain (BET) family proteins. Nuclear Medicine and Biology, 84–85, 96–101. https://doi.org/10.1016/j.nucmedbio.2020.04.003
  • Boutalaka, M., El Bahi, S., Alaqarbeh, M., El Alaouy, M. A., Koubi, Y., Khatabi, K. E., Maghat, H., Bouachrine, M., & Lakhlifi, T. (2023). Computational investigation of imidazo[2,1-b]oxazole derivatives as potential mutant BRAF kinase inhibitors: 3D-QSAR, molecular docking, molecular dynamics simulation, and ADMETox studies. Journal of Biomolecular Structure & Dynamics, 2023, 1–20. https://doi.org/10.1080/07391102.2023.2233629
  • Chen, L., Lin, Y., Yan, X., Ni, H., Chen, F., & He, F. (2023). 3D-QSAR studies on the structure-bitterness analysis of citrus flavonoids. Food & Function, 14(10), 4921–4930. https://doi.org/10.1039/d3fo00601h
  • Cheng, Z., Chen, Q., Cervantes, S., Tang, Q., Gao, X., Tan, Y., Liu, S., Ma, Y., & Shen, Z. (2020). Two-dimensional and Three-dimensional quantitative structure-activity relationship models for the degradation of organophosphate flame retardants during supercritical Water oxidation. Journal of Hazardous Materials, 394, 121811. https://doi.org/10.1016/j.jhazmat.2019.121811
  • Cheng, Z., Chen, Q., Liu, S., Liu, Y., Ren, Y., Zhang, X., & Shen, Z. (2022). The investigation of influencing factors on the degradation of sulfonamide antibiotics in iron-impregnated biochar-activated urea-hydrogen peroxide system: A QSAR study. Journal of Hazardous Materials, 430, 128269. https://doi.org/10.1016/j.jhazmat.2022.128269
  • Daina, A., & Zoete, V. (2016). A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • Daina, A., Michielin, O., & Zoete, V. (2014). iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. Journal of Chemical Information and Modeling, 54(12), 3284–3301. https://doi.org/10.1021/ci500467k
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Divakaran, A., Harki, D. A., & Pomerantz, W. C. K. (2023). Recent progress and structural analyses of domain-selective BET inhibitors. Medicinal Research Reviews, 43(4), 972–1018. https://doi.org/10.1002/med.21942
  • Dobson, M., Legoll, F., Lelièvre, T., & Stoltz, G. (2013). Derivation of Langevin dynamics in a Nonzero background flow field. Mathematical Modelling and Numerical Analysis, 47(6), 1583–1626. https://doi.org/10.1051/m2an/2013077
  • Du, S., Lu, X.-H., Li, W.-Y., Li, L.-P., Ma, Y.-C., Zhou, L., Wu, J.-W., Ma, Y., & Wang, R.-L. (2021). Exploring the dynamic mechanism of allosteric drug SHP099 inhibiting SHP2. Molecular Diversity, 25(3), 1873–1887. https://doi.org/10.1007/s11030-020-10179-y
  • El Rhabori, S., El Aissouq, A., Chtita, S., & Khalil, F. (2022). Design of novel quinoline derivatives as antibreast cancer using 3D-QSAR, molecular docking and pharmacokinetic investigation. Anti-Cancer Drugs, 33(9), 789–802. https://doi.org/10.1097/CAD.0000000000001318
  • El-Mernissi, R., Khaldan, A., Bouamrane, S., Rehman, H. M., Alaqarbeh, M., Ajana, M. A., Lakhlifi, T., & Bouachrine, M. (2023). 3D-QSAR, molecular docking, simulation dynamic and ADMET studies on new quinolines derivatives against colorectal carcinoma activity. Journal of Biomolecular Structure & Dynamics, 2023, 1–18. https://doi.org/10.1080/07391102.2023.2214233
  • Feng, L., Wang, G., Chen, Y., He, G., Liu, B., Liu, J., Chiang, C.-M., & Ouyang, L. (2022). Dual-target inhibitors of bromodomain and extra-terminal proteins in cancer: A review from medicinal chemistry perspectives. Medicinal Research Reviews, 42(2), 710–743. https://doi.org/10.1002/med.21859
  • Gajjela, B. K., & Zhou, M. M. (2023). Bromodomain inhibitors and therapeutic applications. Current Opinion in Chemical Biology, 75, 102323. https://doi.org/10.1016/j.cbpa.2023.102323
  • Gilan, O., Rioja, I., Knezevic, K., Bell, M. J., Yeung, M. M., Harker, N. R., Lam, E. Y. N., Chung, C.-W., Bamborough, P., Petretich, M., Urh, M., Atkinson, S. J., Bassil, A. K., Roberts, E. J., Vassiliadis, D., Burr, M. L., Preston, A. G. S., Wellaway, C., Werner, T., … Dawson, M. A. (2020). Selective targeting of BD1 and BD2 of the BET proteins in cancer and immunoinflammation. Science, 368(6489), 387–394. +. https://doi.org/10.1126/science.aaz8455
  • Götz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized Born. Journal of Chemical Theory and Computation, 8(5), 1542–1555. https://doi.org/10.1021/ct200909j
  • Goudzal, A., El Aissouq, A., El Hamdani, H., Hadaji, E. G., Ouammou, A., & Bouachrine, M. (2023). 3D-QSAR modeling and molecular docking studies on a series of 2, 4, 5-trisubstituted imidazole derivatives as CK2 inhibitors. Journal of Biomolecular Structure & Dynamics, 41(1), 234–248. https://doi.org/10.1080/07391102.2021.2014360
  • Hadni, H., Bakhouch, M., & Elhallaoui, M. (2023). 3D-QSAR, molecular docking, DFT and ADMET studies on quinazoline derivatives to explore novel DHFR inhibitors. Journal of Biomolecular Structure & Dynamics, 41(1), 161–175. https://doi.org/10.1080/07391102.2021.2004233
  • Hu, J., Pan, D., Li, G., Chen, K., & Hu, X. (2022). Regulation of programmed cell death by Brd4. Cell Death & Disease, 13(12), 1059. https://doi.org/10.1038/s41419-022-05505-1
  • Hu, R., Li, Y., Guo, Y., Li, X., Du, S., Liao, M., Hou, H., Sun, H., Zhao, S., Su, J., Chen, X., & Yin, M. (2023). BRD4 inhibitor suppresses melanoma metastasis via the SPINK6/EGFR-EphA2 pathway. Pharmacological Research, 187, 106609. https://doi.org/10.1016/j.phrs.2022.106609
  • Humphreys, P. G., Anderson, N. A., Bamborough, P., Baxter, A., Chung, C.-W., Cookson, R., Craggs, P. D., Dalton, T., Fournier, J. C. L., Gordon, L. J., Gray, H. F., Gray, M. W., Gregory, R., Hirst, D. J., Jamieson, C., Jones, K. L., Kessedjian, H., Lugo, D., McGonagle, G., … White, G. (2022). Identification and Optimization of a Ligand-Efficient Benzoazepinone Bromodomain and Extra Terminal (BET) Family Acetyl-Lysine Mimetic into the Oral Candidate Quality Molecule I-BET432. Journal of Medicinal Chemistry, 65(22), 15174–15207. https://doi.org/10.1021/acs.jmedchem.2c01102
  • Humphreys, P. G., Atkinson, S. J., Bamborough, P., Bit, R. A., Chung, C.-W., Craggs, P. D., Cutler, L., Davis, R., Ferrie, A., Gong, G., Gordon, L. J., Gray, M., Harrison, L. A., Hayhow, T. G., Haynes, A., Henley, N., Hirst, D. J., Holyer, I. D., Lindon, M. J., … Prinjha, R. K. (2022). Design, synthesis, and characterization of I-BET567, a Pan-Bromodomain and Extra Terminal (BET) bromodomain oral candidate. Journal of Medicinal Chemistry, 65(3), 2262–2287. https://doi.org/10.1021/acs.jmedchem.1c01747
  • Jafari, N., Kolla, M., Meshulam, T., Shafran, J. S., Qiu, Y., Casey, A. N., Pompa, I. R., Ennis, C. S., Mazzeo, C. S., Rabhi, N., Farmer, S. R., & Denis, G. V. (2021). Adipocyte-derived exosomes may promote breast cancer progression in type 2 diabetes. Science Signaling, 14(710), eabj2807. https://doi.org/10.1126/scisignal.abj2807
  • Jones, K. L., Beaumont, D. M., Bernard, S. G., Bit, R. A., Campbell, S. P., Chung, C.-W., Cutler, L., Demont, E. H., Dennis, K., Gordon, L., Gray, J. R., Haase, M. V., Lewis, A. J., McCleary, S., Mitchell, D. J., Moore, S. M., Parr, N., Robb, O. J., Smithers, N., … Prinjha, R. K. (2021). Discovery of a Novel Bromodomain and Extra Terminal Domain (BET) protein inhibitor, I-BET282E, suitable for clinical progression. Journal of Medicinal Chemistry, 64(16), 12200–12227. https://doi.org/10.1021/acs.jmedchem.1c00855
  • Khamouli, S., Belaidi, S., Ouassaf, M., Lanez, T., Belaaouad, S., & Chtita, S. (2022). Multi-combined 3D-QSAR, docking molecular and ADMET prediction of 5-azaindazole derivatives as LRRK2 tyrosine kinase inhibitors. Journal of Biomolecular Structure & Dynamics, 40(3), 1285–1298. https://doi.org/10.1080/07391102.2020.1824815
  • Khan, I., Rehman, W., Rahim, F., Hussain, R., Khan, S., Rasheed, L., Alanazi, M. M., Alanazi, A. S., & Abdellattif, M. H. (2023). Synthesis and in vitro alpha-amylase and alpha-glucosidase dual inhibitory activities of 1,2,4-Triazole-bearing bis-Hydrazone derivatives and their molecular docking study. ACS Omega, 8(25), 22508–22522. https://doi.org/10.1021/acsomega.3c00702
  • Kim, S.-K., Liu, X., Park, J., Um, D., Kilaru, G., Chiang, C.-M., Kang, M., Huber, K. M., Kang, K., & Kim, T.-K. (2021). Functional coordination of BET family proteins underlies altered transcription associated with memory impairment in fragile X syndrome. Science Advances, 7(21), 346. https://doi.org/10.1126/sciadv.abf7346
  • Koubi, Y., Moukhliss, Y., Hajji, H., Alaqarbeh, M., Ajana, M. A., Maghat, H., Lakhlifi, T., & Bouachrine, M. (2023). A computational study of Di-substituted 1,2,3-triazole derivatives as potential drug candidates against Mycobacterium tuberculosis: 3D-QSAR, molecular docking, molecular dynamics, and ADMETox. New Journal of Chemistry, 47(25), 11832–11841. https://doi.org/10.1039/D3NJ01649H
  • Kumar, D. T., Shaikh, N., Kumar, S. U., Doss, C G.P., Zayed, H. (2021). Structure-based virtual screening to identify Novel Potential Compound as an Alternative to Remdesivir to overcome the RdRp Protein Mutations in SARS-CoV-2. Frontiers in Molecular Biosciences, 8, 645216. https://doi.org/10.3389/fmolb.2021.645216.
  • Kumari, G., Nigam, V. K., & Pandey, D. M. (2023). The molecular docking and molecular dynamics study of flavonol synthase and flavonoid 3'-monooxygenase enzymes involved for the enrichment of kaempferol. Journal of Biomolecular Structure & Dynamics, 41(6), 2478–2491. https://doi.org/10.1080/07391102.2022.2033324
  • Kumari, M., Waseem, M., & Subbarao, N. (2023). Discovery of multi-target mur enzymes inhibitors with anti-mycobacterial activity through a Scaffold approach. Journal of Biomolecular Structure & Dynamics, 41(7), 2878–2899. https://doi.org/10.1080/07391102.2022.2040593
  • Li, L., Yang, D., Li, H., Chen, G., Lei, P., Gao, Y., & Feng, J. (2023). Heterocycle-substituted alpha-methylene-gamma-butyrolactones derivatives synthesis, antifungal activity, and 3D-QSAR. Journal of Agricultural and Food Chemistry, 71(29), 11008–11015. https://doi.org/10.1021/acs.jafc.3c02117
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Liu, L., Lin, B., Yin, S., Ball, L. E., Delaney, J. R., Long, D. T., & Gan, W. (2022). Arginine methylation of BRD4 by PRMT2/4 governs transcription and DNA repair. Science Advances, 8(49), eadd8928. https://doi.org/10.1126/sciadv.add8928
  • Ma, Z., Bolinger, A. A., Zhou, J., & Tian, B. (2023). Bromodomain-containing protein 4 (BRD4): A key player in inflammatory bowel disease and potential to inspire epigenetic therapeutics. Expert Opinion on Therapeutic Targets, 27(1), 1–7. https://doi.org/10.1080/14728222.2023.2175317
  • Migenda, N., Möller, R., & Schenck, W. (2021). Adaptive dimensionality reduction for neural network-based online principal component analysis. PLoS One, 16(3), e0248896. https://doi.org/10.1371/journal.pone.0248896
  • Mura, M., Wang, J., Zhou, Y., Pinna, M., Zvelindovsky, A. V., Dennison, S. R., & Phoenix, D. A. (2016). The effect of amidation on the behaviour of antimicrobial peptides. European Biophysics Journal, 45(3), 195–207. https://doi.org/10.1007/s00249-015-1094-x
  • Navarro-Acosta, D., Coba-Jimenez, L., Pérez-Gamboa, A., Cubillan, N., & Vivas-Reyes, R. (2023). QSAR modelling of biological activity in Cannabinoids with quantum similarity combinations of charge fitting schemes and 3D-QSAR. Chemistry & Biodiversity, 20(5), e202201086. https://doi.org/10.1002/cbdv.202201086
  • Piha-Paul, S. A., Hann, C. L., French, C. A., Cousin, S., Braña, I., Cassier, P. A., Moreno, V., de Bono, J. S., Harward, S. D., Ferron-Brady, G., Barbash, O., Wyce, A., Wu, Y., Horner, T., Annan, M., Parr, N. J., Prinjha, R. K., Carpenter, C. L., Hilton, J., … Shapiro, G. I. (2020). Phase 1 Study of Molibresib (GSK525762), a Bromodomain and extra-terminal domain protein inhibitor, in NUT Carcinoma and other solid tumors. JNCI Cancer Spectrum, 4(2), pkz093. https://doi.org/10.1093/jncics/pkz093
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. explicit solvent particle Mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888. https://doi.org/10.1021/ct400314y
  • Schmitt, A., Grimm, M., Kreienkamp, N., Junge, H., Labisch, J., Schuhknecht, L., Schönfeld, C., Görsch, E., Tibello, A., Menck, K., Bleckmann, A., Lengerke, C., Rosenbauer, F., Grau, M., Zampieri, M., Schulze-Osthoff, K., Klener, P., Dolnikova, A., Lenz, G., & Hailfinger, S. (2023). BRD4 inhibition sensitizes diffuse large B-cell lymphoma cells to ferroptosis. Blood, 142(13), 1143–1155. https://doi.org/10.1182/blood.2022019274
  • Shanmugam, V., & Muthukrishnan, S. (2023). Investigation of novel ligand targeting bromodomain-containing protein 4 (BRD4) for cancer drug discovery: Complete pharmacophore approach. Journal of Biomolecular Structure & Dynamics, 41(23), 14524–14539.
  • Sprenger, K. G., Jaeger, V. W., & Pfaendtner, J. (2015). The general AMBER Force Field (GAFF) Can accurately predict thermodynamic and transport properties of many ionic liquids. The Journal of Physical Chemistry, 119(18), 5882–5895. https://doi.org/10.1021/acs.jpcb.5b00689
  • Su, J., Liu, X., Zhang, S., Yan, F., Zhang, Q., & Chen, J. (2017). A computational insight into binding modes of inhibitors XD29, XD35, and XD28 to bromodomain-containing protein 4 based on molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 36(5), 1212–1224. https://doi.org/10.1080/07391102.2017.1317666
  • Su, J., Liu, X., Zhang, S., Yan, F., Zhang, Q., & Chen, J. (2017). A theoretical insight into selectivity of inhibitors toward two domains of bromodomain‐containing protein 4 using molecular dynamics simulations. Chemical Biology & Drug Design, 91(3), 828–840. https://doi.org/10.1111/cbdd.13148
  • Tahir, A., Alharthy, R. D., Naseem, S., Mahmood, N., Ahmed, M., Shahzad, K., Akhtar, M. N., Hameed, A., Sadiq, I., Nawaz, H., & Muddassar, M. (2018). Investigations of structural requirements for BRD4 inhibitors through ligand and structure-based 3D QSAR approaches. Molecules, 23(7), 1527. https://doi.org/10.3390/molecules23071527
  • Taniguchi, Y. (2016). The Bromodomain and Extra-Terminal Domain (BET) family: Functional anatomy of BET paralogous proteins. International Journal of Molecular Sciences, 17(11), 1849. https://doi.org/10.3390/ijms17111849
  • To, K. K. W., Xing, E., Larue, R. C., & Li, P.-K. (2023). BET bromodomain inhibitors: Novel design strategies and therapeutic applications. Molecules, 28(7), 3043. https://doi.org/10.3390/molecules28073043
  • Tong, J.-B., Xiao, X.-C., Luo, D., Xu, H.-Y., Xing, Y.-C., Gao, P., & Liu, Y. (2023). Discovery of novel BRD4-BD2 inhibitors via in silico approaches: QSAR techniques, molecular docking, and molecular dynamics simulations. Molecular Diversity, 2023, 11. https://doi.org/10.1007/s11030-023-10611-z
  • Virtanen, S. I., Niinivehmas, S. P., & Pentikäinen, O. T. (2015). Case-specific performance of MM-PBSA, MM-GBSA, and SIE in virtual screening. Journal of Molecular Graphics & Modelling, 62, 303–318. https://doi.org/10.1016/j.jmgm.2015.10.012
  • Wang, F., Qiu, Y., & Zhou, B. (2022). In silico exploration of hydroxylated polychlorinated biphenyls as estrogen receptor beta ligands by 3D-QSAR, molecular docking and molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 40(15), 6798–6809. https://doi.org/10.1080/07391102.2021.1890220
  • Weng, G., Wang, E., Chen, F., Sun, H., Wang, Z., & Hou, T. (2019). Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding affinities and binding poses for protein–peptide complexes. Physical Chemistry Chemical Physics, 21(19), 10135–10145. https://doi.org/10.1039/c9cp01674k
  • Yu, H., & Dalby, P. A. (2020). A beginner’s guide to molecular dynamics simulations and the identification of cross-correlation networks for enzyme engineering. Methods Enzymol, 643, 15–49. https://doi.org/10.1016/bs.mie.2020.04.020
  • Zhang, X., Yan, J., Wang, H., Wang, Y., Wang, J., & Zhao, D. (2021). Molecular docking, 3D-QSAR, and molecular dynamics simulations of thieno[3,2-b]pyrrole derivatives against anticancer targets of KDM1A/LSD1. Journal of Biomolecular Structure & Dynamics, 39(4), 1189–1202. https://doi.org/10.1080/07391102.2020.1726819
  • Zhao, J., Yu, N., Zhao, X., Quan, W., & Shu, M. (2023). 3D-QSAR, molecular docking, and molecular dynamics analysis of dihydrodiazaindolone derivatives as PARP-1 inhibitors. Journal of Molecular Modeling, 29(5), 131. https://doi.org/10.1007/s00894-023-05525-4
  • Zheng, Z.-Z., Xia, L., Hu, G.-S., Liu, J.-Y., Hu, Y.-H., Chen, Y.-J., Peng, J.-Y., Zhang, W.-J., & Liu, W. (2022). Super-enhancer-controlled positive feedback loop BRD4/ERalpha-RET-ERalpha promotes ERalpha-positive breast cancer. Nucleic Acids Research, 50(18), 10230–10248. https://doi.org/10.1093/nar/gkac778

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.