80
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comprehensive in silico analysis of prolactin receptor (PRLR) gene nonsynonymous single nucleotide polymorphisms (nsSNPs) reveals multifaceted impact on protein structure, function, and interactions

ORCID Icon, ORCID Icon, & ORCID Icon
Received 27 Jan 2024, Accepted 20 Mar 2024, Published online: 24 Apr 2024
 

Abstract

This study delves into the functional and structural implications of non-synonymous single nucleotide polymorphisms (nsSNPs) within the Prolactin Receptor (PRLR) gene. Thirteen deleterious nsSNPs were identified through bioinformatics tools, with SIFT predicting 168 out of 395 nsSNPs as detrimental, exhibiting tolerance index (TI) scores ranging from 0 to 0.05. Polyphen2 assigned likelihood scores >0.99 to all 13 nsSNPs, indicating high probability of harm, while Panther scores classified most nsSNPs as ‘probably damaging’, with specific mutations like W218R scoring 0.74, suggesting a higher impact. Stability analysis using DDG I-Mutant and DDG Mupro consistently predicted decreased stability for all mutations, with CUPSAT indicating mutations like V125G and W218R significantly decreasing stability. Structural analysis through DynaMut predicted destabilization for all mutations except L196I and L292H. MutPred2 highlighted structural alterations for all nsSNPs except L196I, L293V, R315W, and S353N. Domain analysis revealed key mutations within essential functional domains, with five nsSNPs located within Fibronectin type-III domains. Bayesian analysis through ConSurf identified 9 critical residues, with 11 nsSNPs exhibiting notably high conservation. STRING analysis unveiled a complex interaction network, indicating involvement in vital biological processes like lactation. Molecular dynamics (MD) simulations, spanning 100 nanoseconds, elucidated structural dynamics induced by detrimental missense SNPs. Post-translational modification (PTM) analysis identified specific mutations, such as R351, involved in methylation, while S353 was implicated in phosphorylation and glycosylation. These findings offer comprehensive insights into the molecular and phenotypic effects of deleterious nsSNPs in the PRLR gene, crucial for selective breeding.

Communicated by Ramaswamy H. Sarma

Consent for publication

Not applicable

Disclosure statement

No potential conflict of interest was reported by the author(s).

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Ethical approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Data availability statement

All data generated or analyzed during this study are included in this published article.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.