90
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comprehensive in silico analysis of prolactin receptor (PRLR) gene nonsynonymous single nucleotide polymorphisms (nsSNPs) reveals multifaceted impact on protein structure, function, and interactions

ORCID Icon, ORCID Icon, & ORCID Icon
Received 27 Jan 2024, Accepted 20 Mar 2024, Published online: 24 Apr 2024

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Acosta, A., Ronda, R., López, F., Fernandes, Z., Gomes-Filho, M. A., & Uffo, O. (2012). Polimorfismo genético en los receptores de la hormona del crecimiento y prolactina en el Siboney de Cuba: Desarrollo de metodologías. Revista de Salud Animal, 34, 109–114.
  • Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S., & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248–249. https://doi.org/10.1038/nmeth0410-248
  • Ashkenazy, H., Erez, E., Martz, E., Pupko, T., & Ben-Tal, N. (2010). ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Research, 38(Web Server issue), W529–533. https://doi.org/10.1093/nar/gkq399
  • Brym, P., Kamiński, S., & Wójcik, E. (2005). Polymorphism within the bovine prolactin receptor gene (PRLR). https://www.semanticscholar.org/paper/Polymorphism-within-the-bovine-prolactin-receptor-Brym-Kami%C5%84ski/b33489fd603d947447a42a88d76b98d83852fe6e
  • Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 33(Web Server issue), W306–W310. https://doi.org/10.1093/nar/gki375
  • Cheng, J., Randall, A., & Baldi, P. (2006). Prediction of protein stability changes for single-site mutations using support vector machines. Proteins, 62(4), 1125–1132. https://doi.org/10.1002/prot.20810
  • Hashemi-Shahraki, F., Shareghi, B., & Farhadian, S. (2023). Investigation of the interaction behavior between quercetin and pepsin by spectroscopy and MD simulation methods. International Journal of Biological Macromolecules, 227, 1151–1161. https://doi.org/10.1016/j.ijbiomac.2022.11.296
  • Hashemi-Shahraki, F., Shareghi, B., Farhadian, S., & Yadollahi, E. (2023). A comprehensive insight into the effects of caffeic acid (CA) on pepsin: Multi-spectroscopy and MD simulations methods. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 289, 122240. https://doi.org/10.1016/j.saa.2022.122240
  • Hayes, B. J., Bowman, P. J., Chamberlain, A. J., & Goddard, M. E. (2009). Invited review: Genomic selection in dairy cattle: Progress and challenges. Journal of Dairy Science, 92(2), 433–443. https://doi.org/10.3168/jds.2008-1646
  • Hayes, H., Le Chalony, C., Goubin, G., Mercier, D., Payen, E., Bignon, C., & Kohno, K. (1996). Localization of ZNF164, ZNF146, GGTA1, SOX2, PRLR and EEF2 on homoeologous cattle, sheep and goat chromosomes by fluorescent in situ hybridization and comparison with the human gene map. Cytogenetics and Cell Genetics, 72(4), 342–346. https://doi.org/10.1159/000134218
  • Hoda, A., Bixheku, X., & Lika (Çekani), M. (2023a). Computational analysis of non-synonymous single nucleotide polymorphism in the bovine PKLR gene. Journal of Biomolecular Structure & Dynamics, 0(0), 1–14. https://doi.org/10.1080/07391102.2023.2219315
  • Hoda, A., Lika, Kolaneci, V., & Çekani, M. (2023b). Identification of deleterious nsSNPs in human HGF gene: In silico approach. Journal of Biomolecular Structure & Dynamics, 41(21), 11889–11903. https://doi.org/10.1080/07391102.2022.2164060
  • Hu, X., Lü, A., Chen, H., Gao, X., Xu, H., Zhang, C., Fang, X., & Lei, C. (2009). Preliminary evidence for association of prolactin and prolactin receptor genes with milk production traits in chinese holsteins. Journal of Applied Animal Research, 36(2), 213–217. https://doi.org/10.1080/09712119.2009.9707062
  • Jorgensen, W., Chandrasekhar, J., Madura, J., Impey, R., & Klein, M. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Khalil, M., Iraqi, M. M., Mohamed, M. H., & Zahed, S. M. (2023). Detecting the molecular associations of prolactin gene genotypes with milk traits in Friesian and Baladi cows using Rflp technique. Egyptian Journal of Animal Production, 60(2), 77–86. https://doi.org/10.21608/ejap.2023.219284.1060
  • Kucukkal, T. G., Petukh, M., Li, L., & Alexov, E. (2015). Structural and physico-chemical effects of disease and non-disease nsSNPs on proteins. Current Opinion in Structural Biology, 32, 18–24. https://doi.org/10.1016/j.sbi.2015.01.003
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). Procheck: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Littlejohn, M. D., Henty, K. M., Tiplady, K., Johnson, T., Harland, C., Lopdell, T., Sherlock, R. G., Li, W., Lukefahr, S. D., Shanks, B. C., Garrick, D. J., Snell, R. G., Spelman, R. J., & Davis, S. R. (2014). Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle. Nature Communications, 5(1), 5861. https://doi.org/10.1038/ncomms6861
  • Lü, A., Hu, X., Chen, H., Dong, Y., & Pang, Y. (2011). Single nucleotide polymorphisms of the prolactin receptor (PRLR) gene and its association with growth traits in Chinese cattle. Molecular Biology Reports, 38(1), 261–266. https://doi.org/10.1007/s11033-010-0103-5
  • Lü, A., Hu, X., Chen, H., Dong, Y., Zhang, Y., & Wang, X. (2011). Novel SNPs of the Bovine PRLR gene associated with milk production traits. Biochemical Genetics, 49(3–4), 177–189. https://doi.org/10.1007/s10528-010-9397-1
  • McClure, M. C., Morsci, N. S., Schnabel, R. D., Kim, J. W., Yao, P., Rolf, M. M., McKay, S. D., Gregg, S. J., Chapple, R. H., Northcutt, S. L., & Taylor, J. F. (2010). A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Animal Genetics, 41(6), 597–607. https://doi.org/10.1111/j.1365-2052.2010.02063.x
  • Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D., & Thomas, P. D. (2017). PANTHER version 11: Expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements. Nucleic Acids Research, 45(D1), D183–D189. https://doi.org/10.1093/nar/gkw1138
  • Moore, R. M., Harrison, A. O., McAllister, S. M., Polson, S. W., & Wommack, K. E. (2017). Iroki: Automatic customization and visualization of phylogenetic trees. [Preprint]. Bioinformatics. https://doi.org/10.1101/106138
  • Ng, P. C., & Henikoff, S. (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research, 31(13), 3812–3814. https://doi.org/10.1093/nar/gkg509
  • Parihar, G., Sharma, D., Singh, S. P., Tiwari, M., Goel, R., Singh, S. K., & Pandey, V. (2017). Genetic polymorphism study in prolactin receptor (PRLR) gene and their association with milk production traits in Indian cattle breeds. Journal of Animal Research, 7(5), 813. https://doi.org/10.5958/2277-940X.2017.00125.5
  • Parthiban, V., Gromiha, M. M., & Schomburg, D. (2006). CUPSAT: Prediction of protein stability upon point mutations. Nucleic Acids Research, 34(Web Server issue), W239–242. https://doi.org/10.1093/nar/gkl190
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Rodrigues, C. H., Pires, D. E., & Ascher, D. B. (2018). DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Research, 46(W1), W350–W355. https://doi.org/10.1093/nar/gky300
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Salar, R. (2014). Polymorphism studies of prolactin receptor (PRLR) gene in indigenous grey cattle breeds of India. DHR International Journal of Biomedical and Life Sciences, 5, 314–321.
  • Samuel, B., Dadi, H., Dejene, G., Kang, M., Park, C., & Dinka, H. (2023). Single nucleotide polymorphisms within exon four of the prolactin gene and their effect on milk traits in cattle populations of Ethiopia. Animal Biotechnology, 34(9), 4634–4644. https://doi.org/10.1080/10495398.2023.2176867
  • Sheraiba, N., Bakly, M., Mostafa, I., & Mahboub, H. (2023). Expression variance of the PRLR gene and its association with milk productive traits in pure Holstein-Friesian and Montbeliarde × Holstein crossbred cattle raised under Egyptian condition. Alexandria Journal of Veterinary Sciences, 77(1), 123. April 15) | https://doi.org/10.5455/ajvs.146385
  • Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. V (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
  • Venselaar, H., Te Beek, T. A. H., Kuipers, R. K. P., Hekkelman, M. L., & Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-science approach with life scientist friendly interfaces. BMC Bioinformatics, 11(1), 548. https://doi.org/10.1186/1471-2105-11-548
  • Vieira, I. H. P., Botelho, E. B., de Souza Gomes, T. J., Kist, R., Caceres, R. A., & Zanchi, F. B. (2023). Visual dynamics: A WEB application for molecular dynamics simulation using GROMACS. BMC Bioinformatics, 24(1), 107. https://doi.org/10.1186/s12859-023-05234-y
  • Viitala, S., Szyda, J., Blott, S., Schulman, N., Lidauer, M., Mäki-Tanila, A., Georges, M., & Vilkki, J. (2006). The role of the bovine growth hormone receptor and prolactin receptor genes in milk, fat and protein production in Finnish Ayrshire Dairy Cattle. Genetics, 173(4), 2151–2164. https://doi.org/10.1534/genetics.105.046730
  • Wang, D., Liu, D., Yuchi, J., He, F., Jiang, Y., Cai, S., Li, J., & Xu, D. (2020). MusiteDeep: A deep-learning based webserver for protein post-translational modification site prediction and visualization. Nucleic Acids Research, 48(W1), W140–W146. https://doi.org/10.1093/nar/gkaa275
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Worth, C. L., Preissner, R., & Blundell, T. L. (2011). SDM—a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Research, 39(Web Server issue), W215–W222. https://doi.org/10.1093/nar/gkr363
  • Yakubu, A., & Salako, A. E. (2016). Predicting the effects of non-synonymous amino acid variants on protein function in prolactin receptor of cattle and chicken using the MEGA-MD algorithm. Nigerian Journal of Animal Science, 18(1), 11–17. https://www.ajol.info/index.php/tjas/article/view/162741
  • Zhang, J., Zan, L., Fang, P., Zhang, F., Shen, G., & Tian, W. (2008). Genetic variation of PRLR gene and association with milk performance traits in dairy cattle. Canadian Journal of Animal Science, 88(1), 33–39. https://doi.org/10.4141/CJAS07052
  • Zhang, Y., & Skolnick, J. (2005). TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 33(7), 2302–2309. https://doi.org/10.1093/nar/gki524
  • Zhou, X., Zheng, W., Li, Y., Pearce, R., Zhang, C., Bell, E. W., Zhang, G., & Zhang, Y. (2022). I-TASSER-MTD: A deep-learning-based platform for multi-domain protein structure and function prediction. Nature Protocols, 17(10), 2326–2353. https://doi.org/10.1038/s41596-022-00728-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.