239
Views
7
CrossRef citations to date
0
Altmetric
Articles

Bioaccessible Iron and Zinc in Native and Fortified Enzyme Hydrolyzed Casein and Soya Protein Matrices

, , &
Pages 233-248 | Published online: 28 Nov 2016
 

ABSTRACT

Casein and soybean are superior quality proteins; however, these are known to inhibit mineral absorption. These investigations were aimed at enzymatic modification of these proteins and to study their effect on mineral bioaccessibility. Casein and soybean proteins were hydrolyzed with alcalase and trypsin individually under optimum conditions. The protein hydrolysates, prepared with different degrees of hydrolysis, were freeze dried, fortified with either iron or zinc and analyzed for bioaccessible minerals in vitro. Proteolytic hydrolysis enhanced the bioaccessibility of iron and zinc in proportion to the degree of hydrolysis. Tryptic hydrolysis enhanced the bioaccessible iron from 1–4% in casein and from 1.3–3.3% in soybean. Alcalase hydrolysis showed a comparatively higher enhancement with both the proteins. Tryptic hydrolysis enhanced zinc bioaccessibity by 3-fold in casein and alcalase hydrolysis enhanced by 2- to 2.5-fold. In soybean, dephytinization showed a synergistic effect. In conclusion, enzymatic hydrolysis of proteins looks promising for enhancing bioaccessibility of minerals in protein matrices.

Funding

The authors are thankful for the Planning Commission of India, Council of Scientific and Industrial Research, New Delhi, for providing financial assistance for the work done.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.